
Rigid-body Dynamics for
Articulated Mesh Tracking

Leonid Keselman (Intel)

Sterling Orsten (Intel)

Stan Melax (formerly @ Intel)

Intel Legal Disclaimer

• No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

• Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

• This document contains information on products, services and/or processes in development. All information provided here is
subject to change without notice. Contact your Intel representative to obtain the latest forecast, schedule, specifications and
roadmaps.

• The products and services described may contain defects or errors known as errata which may cause deviations from published
specifications. Current characterized errata are available on request.

• Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your
system manufacturer or retailer or learn more at [intel.com].

• Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.
Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information
and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product
when combined with other products.

• Intel, the Intel logo, Intel® RealSense™ are trademarks of Intel Corporation in the U.S. and/or other countries.

• Other names and brands may be claimed as the property of others.

• © 2015 Intel Corporation

<Demo>

• Run on my IT-issued laptop
• i5-4300U @ 1.90 GHz

• This is the machine used for any demos/timings in talk

• Algorithm code is all single-core C++ CPU code
• By choice

Technical Reference Materials

• Physics Engine

• https://github.com/melax/sandbox
• Stan Melax’s sandbox for physics + graphics code, BSD license
• Sequential Iterative Impulse solver, © 1998-2008

• Our tracking built on top of improved/expanded version

• Intel’s 2013 release of this work, free download
• https://software.intel.com/en-us/articles/the-intel-skeletal-hand-tracking-library-experimental-release
• Camera input layer is sample code, you could re-purpose on top of whatever data you’d like

• Demo Videos & Concepts
• https://www.youtube.com/user/smelax

https://github.com/melax/sandbox
https://software.intel.com/en-us/articles/the-intel-skeletal-hand-tracking-library-experimental-release
https://www.youtube.com/user/smelax

Academic Reference Material

• Melax, Keselman, Orsten.
• Dynamics based 3D skeletal hand tracking.

• i3D 2013. Poster

• GI 2013, Full-length paper

Talk Overview

1. Motivation
2. Dynamics-Based Tracking

a) Background
b) Method overview
c) Hand Model

3. Fast iterative Tracking
a) Our tracking architecture
b) Benefits of being 3D
c) Multi-hypothesis architecture
d) Value of working in a constraint-

based solver

4. Cameras and Usages
a) Basic Filter Architecture
b) Structured Light: PrimeSense &

Kinect v1
c) Time-of-Flight: SoftKinetic
d) Projected Texture Stereo: Intel

R200
e) Structured Light: Intel F200

5. Annotation, Learning and
Classification

6. Q&A

Background

Background

• Intel interested in depth cameras
• Started in ~2011
• Most of our work was during 2012

• January 2013: “Senz 3D”
• QVGA, TOF depth camera
• CES 2013 Launch

• Present Day: Intel RealSense
• F200 & R200

Background

• Intel has 2 depth sensors
available as developer kits

• http://click.intel.com/realsense.html

• F200
• Structured Light

• R200
• Projected Texture Stereo

http://click.intel.com/realsense.html

2011: Real-time “Hand Tracking” from 3D cameras

3D Hand Tracking Goal

• Full 6 DOF pose for all finger bodies
• Along with sufficient information to provide collisions and interactions
• On consumer hardware

• Existing work on providing such 3D pose
• Wang, Popovic. Real-time hand-tracking with a color glove. ‘09. + 6D Hands Pose Template
• Hilliges et al. Digits: freehand 3D interactions anywhere using a wrist-worn gloveless sensor UIST ‘12.
• Oikonomidis, Kyriazis, Argyros. Efficient model-based 3D tracking of hand articulations using

Kinect. BMVC ‘11.

Motivation: Emergent Interaction

https://www.youtube.com/watch?v=sAcTshfZCU8

Dynamics-based Tracking

Rigid Body Dynamics

• Ability to physically
simulate articulated
models with collisions and
joints.

• Achieved by satisfying
linear and angular
constraints.

Rigid Body Dynamics

• Ability to physically
simulate articulated
models with collisions and
joints.

• Achieved by satisfying
linear and angular
constraints.

• From Adam Finkelstien’s COS426 lecture notes:

Kinematics vs Dynamics

GJK 1988

Surface constraints
• Like little magnets that attract the surface

Surface constraints created from
synthetically generated depth data

2nd instance (left), generates depth data (middle), tracking/fitting (right)

Model to track authored in 3DS max
•Created a generic hand and scale it as necessary:

20

Custom models could be made.

Combining constraints + hand mesh

Rigid Body Dynamics

• Picture from E. Coumans’ talk
GDC14 on MLCP solvers
• http://goo.gl/84N71q

• Many methods
• Stable, Approximate
• Minimal tuning, temporally consistent
• Very, very fast
• (30-1000Hz for modern games)

• We use a sequential impulse solver.
• Fast, stable, converges to global solution
• See reference slides for more details

http://goo.gl/84N71q

Rigid Body Dynamics: Easy to reason with

• The use of a single unified solver
• Collisions
• Angular limits
• Data to model minimization
• Approximation to real-world

• Solves an MLCP: an arbitrary set of
angular and linear constraints

• Easy to express new information
into the system
• Force fingertip to bend at expected

relative angle?
• Just add a conical constraint!

Unconstrained With bend angle constraint

Fast Iterative Tracking

Try hypotheses and heuristics

Prior State

Joint Limits

Camera
Samples

Dynamics
Solver

Point
Cloud

3D Hand
Model

Dynamics
Solver

Dynamics
Solver

Dynamics
Solver

Dynamics
Solver

Select Least
Error Pose

Hand Pose:
6 DOF for each of

the17 bones

Surface
Constraints

Finger
Collisions

Common
Information

Contact
Constraints

Angular
Constraints

Gross Motion
Bias

Pose
Classifier

Grasping
Bias

Explore
state space

Parallel
Finger

Constraints

Fingertip
Position

Constraints

Locked
Joints

Flip Fingers
with Joint

Constraints

Prior State

Dynamics
Solver

Dynamics
Solver Select Least

Error Pose Hand Pose:
6 DOF for each of

the17 bones

Common
Information

Pose
Classifier

Fingertip
Position

Constraints

Pose re-initialization

High Speed Iterative Tracking

Simplified Architecture view

This type of track + reinitialize architecture seems to be catching on
• CVPR 14: Qian et al, “Realtime and Robust Hand Tracking from Depth”
• CHI 15: Sharp et al, "Accurate, Robust, and Flexible Real-time Hand Tracking."

Try hypotheses and heuristics

Prior State

Joint Limits

Camera
Samples

Dynamics
Solver

Point
Cloud

3D Hand
Model

Dynamics
Solver

Dynamics
Solver

Dynamics
Solver

Dynamics
Solver

Select Least
Error Pose

Hand Pose:
6 DOF for each of

the17 bones

Surface
Constraints

Finger
Collisions

Common
Information

Contact
Constraints

Angular
Constraints

Gross Motion
Bias

Pose
Classifier

Grasping
Bias

Explore
state space

Parallel
Finger

Constraints

Fingertip
Position

Constraints

Locked
Joints

Flip Fingers
with Joint

Constraints

Multiple Simulations
• System can get stuck in local

minimum

• Run multiple simulations and
pick the best fit.

• Increase likelihood of regaining
lost tracking

28

0

0.1

0.2

0.3

0.4

0.5

0.6

1 6 11 16 21 26 31 36 41 46 51 56 61

Er
ro

r

Frame Number

Gross Motion Simulation

Normal Simulation

Gross Motion
Simulation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136

Er
ro

r

Frame Number

Grasp Biased Simulation

Grasping
Simulation

Normal
Simulation

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Er
ro

r

Frame Number

State Exploration Simulation

State
Exploration
Simulation

Best
Simulation

Error Metric

• 𝐸𝑚𝑜𝑑𝑒𝑙 = α(𝐸𝑑𝑎𝑡𝑎 ∞ + 𝐸𝑜𝑐𝑐𝑙𝑢𝑑𝑖𝑛𝑔)

• L-inf norm for point cloud to rigid body surface
• We want the pose that best explains all points

• Additional penalty for bone centroid existing in front of background
• Single raycast per bone (17 total per frame)
• Can strengthen penalty to also penalize missing data for ToF cameras

• Non-standard simulations have a penalty multiplier

• Other metrics available, but generative + reprojection based metrics
much more computationally expensive

Two Handed Interaction

• Simple Method
• K-Means Merging for Segmentation

• K = 2

• Explicitly seed leftmost & rightmost points

• Merge clusters if centroids are close

• Run two simulations for 2 hands

• Easy Extension
• Solve in single simulation

• Might require more careful
correspondence

High speed motion tracking

Results
• Tracked hand model

compared to input

35

Creative Gesture Camera Asus xtion

Voxel Subsampling
• Would be too expensive to use every depth

sample.

• High performance
• 45-80 FPS on single core
• Flexible subsampling options
• Approximate hashing scheme

• Added benefit of removing outliers or
“flying pixels”.
• Configurable density check

• Improves fitting of tracking model.

• For noisy cameras, we also have a
custom 16bit spatial median filter and
a bilateral filter for photometric-
aligned data streams

No Subsampling With Subsampling

0

10

20

30

40

50

60

0

1000

2000

3000

4000

5000

6000

0 0.5 1

Frames Per
Second

Vertex
Number

Voxel Size (cm)

Single CPU core performance

Solver Performance

• We’re processing roughly ~300-400
volumetric contacts

• Overall, roughly ~5,000 to 6,500
constraints solved per frame in
multiple hypothesis solver architecture.
• Multiple solvers, multiple passes

• This is roughly 50,000 constraint-
iterations (~10 iterations per step)

• Total system clock on my i5-4300U is
about 6-7 milliseconds
• ~ 1uS/constraint
• ~ 0.15uS/constraint-iteration.

• In single hypothesis version, full pass of
dense data fitting is ~800uS

• Includes everything after voxel
subsample through solver completion,
counting
• Closest surface finding
• Solving data constraints
• Solving self-collision constraints
• Evaluating all error metrics

Benefits of fast iterative tracking

• Fewer points run faster can be a lot more robust.
• Also computationally more efficient: Relative to velocity, 2D image search

space is quadratic with resolution increases, but linear with time decreases.

• If you run fast enough, all changes are small
• KinectFusion, Newcombe et al, 2011; Lucas & Kanade, 1981

• “Real-Time Camera Tracking: When is High Frame-Rate Best?”, Ankur Handa,
Richard A. Newcombe, Adrien Angeli, and Andrew J. Davison, ECCV 2012
• Develops Pareto wavefront for tracking cameras given compute budget. Lower resolution

with higher framerate performs better than higher resolution at lower frame-rate

Benefits of fast iterative tracking

• Feel free to throw out whatever data might be noisy
• Make system robust by being selective

• Can track in extremely sparse data environments
• passive stereo or in depth camera saturation conditions (only edge data)

Benefits of fast iterative tracking

• Robust tracking with
minimal data
• Tracking under camera

saturation conditions

• Temporal Coherence

• Top Right = Input Depth
• White = no data

• Gray = depth data

• Bottom Left = Estimated
Hand Pose

Cameras and Usages

Pose Locking

• Trivial to force the solver to use reduced state spaces.

• Can be far more robust for tracking in constrained situations
1. Unibody: Internally used – solve system as a single rigid body

2. Duobody: experimental – solve the system as 2 solid parts: arm and hand

3. Arbitrary joint locking

Pose Locking: Best-fit pose given only pointer
finger and wrist as open rotational DOF

Combining tracking + simulation

Application – physical 3D interaction

45

Dynamics
Solver

Virtual
Hand

Tracked
Hand
Pose

Other
Virtual
Objects

Forward Dynamics
“Powered-Rag-Doll”

Pose from tracking
system drives
a virtual hand
in the application.

Application Physics Scene

Drives

Jenga Case Study

46

• Easy to knock things over, but Hard to grasp/stack blocks

• 3D displays helpful for judging distance. (eg zspace)

• Intent-assuming artificial systems can enhance interaction. (extra
magnetic pull/push.)

• SoftBody seems to work better than RigidBody (wet bar of soap vs
sponge)

• But really too hard to play without force-feedback
• Interesting area of further work: how to combine tracking

systems with force understanding and communication
• Tu-Hoa Pham, Abderrahmane Kheddar, Ammar Qammaz, Antonis A. Argyros; The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 2810-
2819

Applications to HMD applications

GPU vs CPU
• Please build CPU-side tracking

GPU has a ton of high-throughput numerical compute
but it has two problems

1. Run to completion on tasks

2. VR+AR applications have high compute needs and
you’re getting in the way
• VR is only viable at ~90Hz [Abrash 2014], which is

~ 11ms/frame
• Users expect visual fidelity, applications will use

8-10ms/frame
• Budget of 1-3ms/frame if you’re using the GPU (e.g. 330

to 1000Hz tracking)
• If you miss it, you’re toast: > 11ms often means 22ms,

which is 45Hz visual updates and your users all get sick

Cascaded Hand Pose Regression, CVPR 15, Sun et al. 300Hz on CPU!

Annotation, Learning &
Classification

Getting ground truth

• If you want validation data, or large data-sets for machine learning: use an
iterative geometric tracker

• Failures occur but there’s three huge benefits:
1. Fast and easy
2. If you annotate a few corrections, you can propagate the corrections
3. Geometric trackers can handle multiview pose tracking

• Using multiple cameras, simply register them and feed the algorithm at once
• We simply minimize cloud -> pose error

• SIGGRAPH 14: “Real-Time Continuous Pose Recovery of Human Hands
Using Convolutional Networks” Jonathan Tompson, Murphy Stein, Yann
Lecun, and Ken Perlin.

Training Label Generation
Left=Annotation, Right=Trained Classifier

Explicit a-prior polyhedral model
Pros

•Not solving unnecessarily high dimensional problem

•Easy to render, collide against

Cons

•Not as high-fidelity as a generic skinned mesh

•Doesn’t handle variation across users

52

Hand Variation Across Users

• We’ve found that most adult humans have very similar sized hands

• We’ve been using a simple to use 2-parameter resizing model
• Length
• Width/Thickness
• User-controlled

• CVPR 2015: Sameh Khamis, Jonathan Taylor, Jamie Shotton, Cem Keskin,
Shahram Izadi, Andrew Fitzgibbon; “Learning an Efficient Model of Hand
Shape Variation From Depth Images”
• captures high level-of-detail variation, and also justifies using just 2 or 3 degree of

freedom variation model of hand variation

Hand Variation Across Users
Internal work on naïve hand measurement work done in June 2012

55

Automatic Hand Measurement: Overview

1. Detect blobs, in pre-determined orientation
2. Find points of interest on the contour
3. Feeding a 6 parameter model: finger lengths (5), palm Width

56

Automatic Hand Measurement: Accuracy

0

10

20

30

40

50

60

70

80

90

Pinky Ring Middle Pointer Thumb Palm

m
m

Hand size measurement

Computed

MeasuredMean Median Mode

Mean |E| 2.3% 2.3% 2.8%

Finger σ (mm)
Pinky 0.7

Ring 1.0

Middle 0.6

Pointer 0.6

Thumb 0.8

Palm 0.8

57

Automatic Hand Measurement: Multiple Subjects

• Results across a variety of users are within % of ruler measured values

1 2 3 4 5 6 7 8 9 10 AVERAGE

Mean (|E|) * 4.17% 1.19% 4.67% 2.84% 5.65% 2.43% 4.11% 5.40% 4.25% 2.12% 3.69%

Correlation 0.971 0.993 0.949 0.987 0.955 0.998 0.965 0.951 0.952 0.973 0.969

Measured results (10 users)
1 2 3 4 5 6 7 8 9 10

Pinky 68 64 54 62 68 61 64 54 68 62

Ring 84 78 70 76 78 74 83 64 81 71

Middle 92 80 78 84 87 84 86 70 82 82

Pointer 82 76 70 76 79 78 78 69 75 72

Thumb 68 70 65 65 65 62 68 64 66 68

Palm 90 85 75 83 85 94 98 78 87 88

58

Automatic Hand Measurement: Multiple Subjects

40

50

60

70

80

90

100

40 50 60 70 80 90 100

C
o

m
p

u
te

d
 V

al
u

e
s

Measured Values

Pinky

Ring

Middle

Pointer

Thumb

Palm

Wrist

Automatic Hand Measurement: Applied to
hand tracking

Mean σ

Before 0.066 0.059

After 0.048 0.021

-0.05

0

0.05

0.1

0.15

0.2

Er
ro

r

Tracked*, open hand

Before

After

Q&A: Additional Interactions

https://www.youtube.com/watch?v=73wPAsk3Aeo

Physics Reference Works

Classical Works

• GJK, 1988

• Fast Contact Force Computation,
Baraff, 1994

• Anitescu & Porta, 1996

• Impulse-based Dynamics
Simulation, Mirtich & Canny,
1994-1996

Modern/Education Works
• Open Dynamics Engine, Russell Smith,

2004

• Iterative Dynamics with Temporal
Coherence, Erin Catto, 2005

• Modeling & Solving Constraints, Erin
Catto, GDC 09

• Physics for game programmers, GDC
2012

• Understanding Constraints, Erin Catto,
GDC 2014

• Exploring MLCP solvers, Erwin Coumans,
GDC 2014

http://www.ode.org/slides/parc/dynamics.pdf
http://www.bulletphysics.com/ftp/pub/test/physics/papers/IterativeDynamics.pdf
http://twvideo01.ubm-us.net/o1/vault/gdc09/slides/04-GDC09_Catto_Erin_Solver.pdf
http://box2d.org/files/GDC2014/GDC2014_ErinCatto.zip
http://goo.gl/84N71q

