
DETECTION AND TRACKING OF DEFORMABLE RED BLOOD CELLS

CS279 Project: Detection and tracking of deformable red blood cells
December 4, 2015

Leonid Keselman
leonidk@stanford.edu

We implemented a full tracking pipeline of red blood cells, including automated detection with a

Hough Circle Transform, and deformable tracking with our own Python implementation of

Distance Regularized Level Set Evolution (yes it was written just for this class!) on top of basic

image processing primitives provided by Python’s scikit-image library (e.g. Gaussian Filters). We

analyze the behavior of this tracking system and its shortcomings.

FIG. 1. An example of a tracked cell sequence. The original

microscopy data is shown in a cyan colored background while the tracked
segmentation result is overlaid in red. See results section for details.

INTRODUCTION

In generating and analyzing large amounts of data,

automated methods are important tool in allowing

researchers to obtain quantitative and statistically

significant information. For microscopy applications, the

data of interest is often detection and analysis of cells,

including their geometry, shape and position.

For this project, we chose to focus on red blood cells,

which are of interest to malaria researchers. The leading

source of malaria infection worldwide is the parasite

Plasmodium falciparum, which inflects red blood cells. The

ability to automatically detect red blood cells would make it

possible to automatically detect and check for the

prevalence of the parasite in microscopy data.

Additionally, we focused on tracking red blood cells

which were placed in a waveguide constructed by Saara

Khan & Kara Brower, from the Fordyce & Solgaard Labs

at Stanford. We are acknowledge and are thankful for their

data. In the conditions of the waveguide, there is often

squeezing of the red blood cells, which provides useful

information about deformability, which can be an indicator

of P. falciparum infection. However, this requires

deformable tracking of the red blood cells, which is still an

open problem in the image analytics literate [6].

I. RELATED WORK

There have been several published methods of tracking

red blood cells from that past few years.

One example from 2012 [7], focuses solely on detection

of red blood cells using a Hough Transform. In the course

of this work, the Hough Transform is used as both an

automated detection and post-processing method. See the

section on detection.

Another example from 2014 [8], focused on tracking red

blood cells in very noisy environments, as their data is from

intravital microscopy.

A general deformable tracking method using active

meshes was documented in 2011 [6]. This allows for

tracking of surface contour elements across the entire

sequence. Since this application only requires identification

and segmentation of results, we decided to focus our

energies on a simpler method.

A classic area of object contour detection is active

contour methods (also called snake methods). Geodesic

active contours have been shown to be successful in

demonstrating active tracking in the medical literature,

specifically for tumor and organ segmentation [9]. A recent

formulation of this approach, called Distance-Regularized

Level Sets [1] demonstrated an implementation of active

contour methods without the need to reinitialize. As it is

always preferable to have one less parameter to tune, we

decided to implement that method as our primary form of

deformable tracking.

II. METHODS

A. DETECTION

I. HOUGH CIRCLES

Detection of the cells is done via a Hough Circle

Detector. A Hough Detector works by first detecting edges,

for which we use a canny filter. See Figure 2. Afterwards, it

counts contributions for all positions and radii of interest

and picks the most common hypothesis. The radii of

interest are selected manually (assuming cell size is roughly

constant). The Hough Circle Detector is from the Python

scikit imaging library.

DETECTION AND TRACKING OF DEFORMABLE RED BLOOD CELLS

II. TRANSMITTANCE

MICROSCOPY

As seen below in Figure 2, the Hough circle detector can

successfully detect red blood cells, even with very bad edge

detection from the canny edge detector. In the image below,

from the Yeh Lab at Stanford (data from Katie Amberg-

Johnson), we see the detector able to handle a very

challenging case in normal transmittance microscopy. All

four blood cells, despite their inner geometry are detected

correctly and identified. Even the localization is very good,

III. REFLECTANCE

MICROSCOPY

The data from the microfluidics experiments, however, is

from a different from of microscopy, namely reflectance

microscopy. In this experimental condition the illumination

interacts with the geometry of the red blood cells to a much

higher degree, creating many false edges. In this tracking

sequence, only the top one cell is chosen to be tracked and

detected. Additionally, multiple radii sizes are chosen and

all of them are used to create an initial level set for the

sequence (see next section).

FIG. 2. This is an example of red blood cell detection in transmittance
microscopy, with a circular Hough detector and four red blood cells. The

left frame is the original image, the middle frame is the canny detected

edges, and the right frame are the top 4 detected Hough circles overlaid on
top of a washed out version of the original image.

FIG. 3. This is an example of red blood cell detection in reflectance
microscopy, with a circular Hough detector and two red blood cells. The

left frame is the original image, the middle frame is the canny detected

edges, and the right frame are the detected Hough circles overlaid on top
of a washed out version of the original image.

.

B. TRACKING

For tracking, we only worked off the microfluidics

waveguide dataset (as seen in Figures 1 and 3). This is a

dataset which requires deformable tracking as the

waveguide can sometimes squeeze the cell.

In the case of deformable tracking, we implemented the

Distance Regularized Level Set Evolution paper [1]. Our

implementation was done from scratch in Python but we

mirrored at the original authors MATLAB implementation

to catch errors and ensure correct implementation.

I. LEVEL SET METHODS

Level set methods are a class of contour detection where

instead of tracking the edges directly, edges are encoded

implicitly through a signed distance field. In a signed

distance field, every pixel stores its distance from the

closest edge. Negative values are “inside” and positive

values are considered “outside”. Therefore, the value

matching numerical zero is the position of the edge.

 In active contour methods, the segmentation is seeded

with an initial boundary region, from which it is iteratively

evolved towards the local minima of edges. There are

multiple parameters, including convergence step size, but

the one found most important was alpha. Alpha controls

how the level set evolves, and also which direction.

II. INITIALIZATION

Using the Hough circle as described in the detection

section, the level set is seeded with the interior of the

Hough circle as the inside of the cell. That is, all pixels

inside all valid Hough circles are used. Then it is evolved to

convergence.

DETECTION AND TRACKING OF DEFORMABLE RED BLOOD CELLS

III. LEVEL SET EVOLUTION

Level sets can either be evolved outwards (from a small

seed region) or inwards (from an oversized seed region). To

handle this explicit restriction, we always either dilate or

erode the initialization to make sure the initialization is

correct for which form of level set evolution we’re using.

When we’re evolving outward, we shrink the initialization

region; when we’re evolving inward, we grow it.

We tried examples of both evolution methods and with

parameter tuning were able to obtain similar results.

However, we found that the level set method sometimes

locks onto the edges of the image frame, so we preferred

the outward growing method for most of our experiments.

The level set evolution can be seen as a gradient-descent

search for closest edges, and in the low resolution, noisy

images we used, there are many edges which can satisfy a

local search, so different initializations can sometimes lead

to different results, as seen in Figure 3.

In order to perform tracking, one can simply take the

previous frames’ level set, erode or dilate it, and use that as

the seen for the next frame to perform level set evolution.

This behavior, repeated iteratively, leads to the behavior

shown in Figure 1.

FIG. 4 This is an example of an image (top left) and its edge indicator
function (where white are stronger edges) (log scale) (bottom left). The

middle columns are the Hough circle initializers, eroded and dilated. The

right column shows the final converged level sets for both conditions.

IV. POST-PROCESSING

There were two main issues that required post-processing

in additional to the tracking method: false edges contributed

by the waveguide and run-away errors due to image noise.

We implemented methods to address both.

In order to handle interruption from the waveguide, we

used a mean image over the image sequence (as the

microscope is stationary) in order to provide an easy

background image. However, this background image

sometimes contains real edges from the image sequence, so

we had to choose a blending factor for the mean image. We

finally settled on 15%. This is shown in Figure 5.

FIG. 5 An example showing the change of edge indicator functions

when subtracting the mean image. The original is on the left and the

subtracted image is on the right. As is clearly visible, the subtraction
removed the waveguide but also creates false new edges and removes

some of the real cell data as well.

Additionally, sometimes the edges run catch onto another

cell or the waveguide and shown runaway behavior. To

handle this, we run another Hough transform (either on the

image data or the level set image, we found both worked) to

detect the cell. We then use an oversized version of this

Hough circle as a boundary limit, and remove all level set

data outside the circle. This keeps the contours tracking

even in the case of noisy edges. See Figure 6 below.

FIG. 6 Runaway behavior of level set tracking. Sometimes the
contours’ poor converge (bottom left) can lead to disastrous results later

(bottom right). Using the Hough circle post-processing technique

described, we’re able to control the errors in the level set and have the
contained behavior seen in the top row.

III. RESULTS

Basic tracking results can be seen in Figure 1, where five

example frames from an 84 frame sequence are shown (#1,

#23, #45, #58, #84). Successful tracking is seen in this

example as the cell starts roughly correct, and then

transitions across the waveguide correctly. This required a

combination of background Hough Circle initialization,

background subtraction (15% of mean image), and Hough

Circle on Level Set to post-process growth. This was done

with an alpha = -0.8 (which is an outward growing level

set), and dilation with a disk of size 3 was used between

time-steps. This was the most successful run on this dataset;

a discussion of more challenging issues is brought up in

section IV A.

DETECTION AND TRACKING OF DEFORMABLE RED BLOOD CELLS

A. TRACKING SIZE

As a way to test how robust the tracking is, we plotted

the size of tracked cell (in pixels) across the test frame

sequence. Notable errors occur when the cell begins to

interact with the waveguide (#30-#45) and when it gets

near the edge of the frame (#75-#82). However, both errors

are still fairly small relative to the side of the cell.

FIG. 7. A graph showing the consistency of a single tracked cell across

an image sequence, as the cell crosses a waveguide at around frame

40.The sequence is that from Figure 1.

IV. DISCUSSION/CHALLENGES

A. PARAMETER TUNING

One of the biggest challenges in using this algorithm

correctly is the enormous number of open parameters: how

much of the mean image is subtracted, how high is alpha

set, how large are the cells, how aggressive should the post-

processing circles remove growing data and how much

uncertainty is there in-between frames.

Some examples of poor parameter setting are shown in

Figure 8. If there were additional time, it’d be nice to either

find a more robust set of parameters or simply automate

their setting. By exploring how this algorithm works on a

larger data set, this should be possible.

FIG. 8 Various answers given by the algorithm for the same exact
frame (#58) depending on parameter tuning.

B. WAVEGUIDE

The waveguide is a large conflating factor in the edge

indicator function, which drives all the segmentation. By

exploring more robust methods of removing the waveguide

(such as more sophisticated background subtraction

techniques), we believe that our results would be better.

The challenging part of the waveguide behavior is that

the waveguide often grabs the cell, and these are the most

interesting scenarios. This is also the location of most

expected deformation. Thus our handling of the waveguide

must be very careful as to not remove the useful cell edges

which are present in that area of the frame.

C. NON-UNFORM LIGHTING

Using the waveguide microfluidics data, we’re in a

reflective microscopy condition, and this makes simple

contour tracking difficult. Compared to transmissive

microscopy, where the edges are often illuminated and

clear, reflective microscopy often has much murkier edges.

As the edge indicator function is the basis of the

segmentation method, this often causes erroneous

segmentation and tracking.

There are two interesting methods we’d like to explore in

order to handle this non-unform lighting. The first is to

explicitly model and estimate the lighting, so we can create

an edge indicator function that is more robust. For example,

in these sequences, the top of the cell is always illuminated,

and all edges there should be bright, while the bottom of the

cell edge should be dark. If this information can be brought

into the edge indicator function, we believe our tracking

would significantly improve.

Another method we’d like to try would be to use a

machine-learned edge indicator function. These are well

documented [2] [3] in the computer vision literature, using

Trees, SVMs, and CNNs. They’re used in cases such as

semantic segmentation, where image edges doesn’t have a

clear mapping to what people perceive as object edges. We

DETECTION AND TRACKING OF DEFORMABLE RED BLOOD CELLS

have a similar challenge. In our specific case, with some

manual cell annotation, machine learned edge detectors

might be used to handle both the non-uniform lighting and

the waveguide with one fell swoop.

D. OTHER TRACKING METHODS

In addition to the deformable tracking, it’d be interesting

to explore more long-term optical flow methods, which

keep a history of cell appearance and can handle distortions

that span multiple frames and are sometimes occluded.

Additionally, optical flow methods operate on image

differences and might behave better in such low quality

images.

1. [1] Li, C., Xu, C., Gui, C., & Fox, M. D. (2010).

Distance regularized level set evolution and its

application to image segmentation. Image Processing,

IEEE Transactions on, 19(12), 3243-3254.

2. [2] Bertasius, G., Shi, J., & Torresani, L. (2014).

DeepEdge: A Multi-Scale Bifurcated Deep Network

for Top-Down Contour Detection. arXiv preprint

arXiv:1412.1123.

3. [3] Dollar, P., Tu, Z., & Belongie, S. (2006).

Supervised learning of edges and object boundaries. In

Computer Vision and Pattern Recognition, 2006 IEEE

Computer Society Conference on (Vol. 2, pp. 1964-

1971). IEEE.

4. [4]

https://en.wikipedia.org/wiki/Circle_Hough_Transform

5. [5] Illingworth, J., & Kittler, J. (1988). A survey of

the Hough transform. Computer vision, graphics, and

image processing, 44(1), 87-116.

6. [6] Dufour, A., Thibeaux, R., Labruyere, E., Guillén,

N., & Olivo-Marin, J. C. (2011). 3-D active meshes:

fast discrete deformable models for cell tracking in 3-D

time-lapse microscopy. Image Processing, IEEE

Transactions on, 20(7), 1925-1937.

7. [7] Maitra, M., Gupta, R. K., & Mukherjee, M. (2012).

Detection and counting of red blood cells in blood cell

images using Hough transform. International Journal

of Computer Applications, 53(16), 18-22.

8. [8] Guo, D., van de Ven, A. L., & Zhou, X. (2014).

Red blood cell tracking using optical flow methods.

Biomedical and Health Informatics, IEEE Journal of,

18(3), 991-998.

9. [9] Caselles, V., Kimmel, R., & Sapiro, G. (1997).

Geodesic active contours. International journal of

computer vision, 22(1), 61-79.

