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Image Convolution + Embedding
Fine-tuning an embedding layer into an ImageNet-trained 

classifier. Implemented in Caffe. To utilized an ImageNet 

trained classifier, we must use an embedding from 2D to 3D. 

Two architectures were tested and shown to be sucessful for 

2D to 3D embedding. 

Volumetric Convolution
Straightforward mapping of a shallow convolutional neural 

network to 3D data. Implemented in Torch. Guidance on 

sizes and dimensions was given by Hao Su and Charles 

Qi. 
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We focuses on ShapeNet, a recently released dataset that 

includes 3D CAD models of forty different object categories, 

dubbed ModelNet40. We implement 3D convolutional neural 

networks operating directly on these volumes, as well as 2D 

convolutional networks operating on a learned embedded 

from the 3D model.

Previously published results suggest that 2D-based CNNs may 

perform better on ModelNet40. Specifically, the current leader 

on the dataset uses pre-trained 2D CNNs on multiple rendered 

views of the models. Similarly, it’s been shown that even a 

single, cylindrical rendering of a mesh, run through a 2D CNN 

can outperform the initially published 3D CNN results.

Architecture Convolutions Pretrain

Top 1 

Accuracy

MVCNN [3] 2D ImageNet 90.1%

VoxNet [2] 3D None 83.0%

DeepPano [4] 2D 77.6%

3DShapeNets [1] 3D None 77.0%
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Fine-Tuned AlexNet, 

FC1024 embedding • Better Embedding Architectures: Currently we’ve tested a straightforward 

set of embedding architectures, including full-connected layers and 

deconvolutional layers. However, deeper networks or other possible topologies 

may operate better.

• Fine-tune additional layers: Currently these results come from a single pass 

training operation where the image convolutional network is held locked while 

the top classifier labels and embedding network are trained.

• Different data formats:  These are simple occupancy voxel grids, perhaps 

using something more sophisticated, like a signed distance field, would yield 

better results.

• Completing the loop and using real 3D data: Comparing 3D data from a  

single viewpoint (like a depth camera) or learning a 3D embedding from 2D 

data, to do shape classification from images, based only on model annotations. 

VGG + Upsampling

Embeddings

Deconvolution-based embedding. First the input volume is convolved 

with kernels of sized 1x1x30, 1x30x1, 30x1x1, down each cardinal axis. 

Then they pass through a bank of convolutions to learn a non-linear 

transform. They are then concatenated, collapsed into 3 channels, 

upsampled, and trimmed with an appropriately sized kernel. All 

convolutions are 3x3. 
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Fully connected embedding. The 30x30x30 volume is first mapped into a 

1024 dimensional embedding layer, before being mapped to a 227x227 

sized monochromatic image, and them duplicated across all three color 

channels. 
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Volumetric Convolution
• Vanilla Model: No dropout, using SGD with momentum, 8 epochs. 83.8%

• Vanilla Model: No dropout, using Adam, 8 epochs, 82.2% (faster 

convergence)

• Dropout Model: Dropout varying from 0.8 to 0.5 retention, using SGD, 8 

epochs, 84.6%

• Pool + 3x3 Model: Replace first convolution layer with 3x3 convolutions 

followed by 3x3 max pooling, dropout at FC layers, SGD. 8 epochs, 85.7%

• Pool + 3x3 Model: Use Nestrov SGD instead, 86.7%

Image Convolution + Embedding
• Fully Connected Embedding + CaffeNet: 66.5%

• Fully Connected + NetworkInNetwork: 63.0%

• Fully Connected + GoogleNet: 57.0%

• Fully Connected + VGG: Lost the protofile!

• Fully Connected +  3 sets of 1x1 convolution + Single Channel, 

reducing the number of parameters and making it a 900 dimensional 

hidden state: 67.3%

• Fully Connected Embedding + 1x1 Conv + Single Channel + Locking 

entire original network: By locking the additional convolutional layers, I 

was able to get an even better result, at 75.6% 

• Fully Connected Embedding + 1x1 Conv + Single Channel + Locking 

entire original network: Reducing the data to only use a single view 

dropped it all the way down to 63%

• Fully Connected Embedding + 1x1 Conv + Single Channel + train from 

scratch: Training the same network as two above, but without initializing to 

• ImageNet learned weights gives only  64% performance.

• Deconvolutional Embedding + VGG-16: 78.0%

• Deconvolutional Embedding + VGG-16 + fine-tune: 83.5%

• ResNet50 + deconvolution embedding: 50%

• GoogleNet + deconv embedding: 31%

• VGG-16 + deconv + xavier init for deconv: 0.025%.


