
A Maze Bot

Leonid Keselman∗1, Joshua Born†2, Negin Heravi‡2, Jess Moss§2, and Margaret
Coad¶2

1Department of Computer Science, Stanford University
2Department of Mechanical Engineering, Stanford University

June 12, 2017

Abstract

Our group found inspiration in the labyrinth maze toys. In them, the user must move a
ball through the maze to reach a desired end position by tilting the maze in different directions
to navigate the ball around the walls. The goal of our project was to program the Puma robot
to mimic this behavior. We wanted to incorporate both vision and real time feedback in our
project so we planned on having a camera above the robot to first solve the maze and then
provide the current ball position as the robot moved the ball to it’s goal position.

The initial challenges of this project were creating a real time vision system that would both
find the solutions for the maze ahead of time and then while solving the maze provide feedback
of the current ball position with minimal latency so that it could be used in a controller for the
Puma. We also needed to design a control law that would move the ball to a target position.
Before running this on the Puma we also wanted to test our controller in simulation which
required modifying the simulator, visualizer, and controller code to accept two "robots", one
for the Puma and another that represented the ball.

In addition, we hoped to be able to solve any viable maze we were given using computer
vision. To achieve this, we first acquired blue and red Lego pieces, which allowed us to easily
reconfigure the maze as well as provide contrast for the vision algorithm. The red Legos
represented possible positions the ball could go and the blue Lego pieces represented the
outline of the maze or the walls. Additionally, one green square represented the final desired
position and the ball was a black marble. Using this color schematic, we were then able to
process the maze and solve it using a breadth-first-search algorithm. Since the camera was
mounted above the robot using a tripod we also needed to track the orientation of the maze,
which was done using AprilTags and allowed us to create an undistorted view of the maze
where we could then get the position of the ball.

We had to create a viable controller that worked for our system. To do this, we decided to
keep the Puma end effector position fixed, and only change its orientation. While we initially
hoped to do this using proportional derivative control, we realized delays in the camera sensory
information resulted in the the derivative term creating large oscillations. Hence, instead we
used a proportional controller based off the balls current and desired position calculated from
the maze solver.

Before controlling the Puma, we precomputed the solution for each new maze. This yielded
a desired position for the ball at every point on the maze. So during runtime, when we needed
to control the Puma to solve the maze we simply found the current position of the ball and
then looked up the desired position to send to our controller. This allowed for real time
feedback with low latency since the maze solution was only computed once. Using this design
and control strategy we were able to consistently solve the maze and navigate the ball to the
goal position.

∗leonidk@stanford.edu
†jcborn@stanford.edu
‡nheravi@stanford.edu
§jlmoss@stanford.edu
¶mmcoad@stanford.edu

1



1 Final Implementation
A video example of our final prototype operating successfully is available in full or in part.

1.1 Hardware
To facilitate the change of the maze design for users, Lego pieces were used to build the maze. For
the walls standard blue 2X1 legos were used, and to provide a flat surface for the ball to roll on we
used flat red 2X2 legos. A black marble was used as the rolling ball. Four 5 mm holes were drilled
at the center of the base plate with 30 mm by 30 mm spacing. To account for the error and for
better alignment of the drilled holes with Puma’s end effector holes, the holes can be widened to
about 7 mm in diameter. The maze plate was screwed onto the Puma’s end effector and four pieces
of blue foam were used to cover the screw heads in order to avoid confusion in the vision module.
This direct mounting method to the Puma minimized the mass of the end effector which allowed
for better performance when controlling orientation. A piece of green foam was used to cover the
final goal tile. These Legos allowed us to try many different maze configurations to ensure that
both our maze solving algorithm and controller were effective. A picture of the built Lego maze is
shown in Figure 1.

Figure 1: Maze built from of Legos.

1.2 Vision
We initially planned to track the maze directly using an RGBD camera to estimate position; color to
track the maze and depth to perform maze segmentation from the background. However, challenges
handling camera noise, accuracy in the depth data in tracking a maze our size, and inconsistent
lighting led us to abandon that approach. Instead we moved to a marker-based tracking system
using a standard RGB camera. After some review, we chose to use AprilTags, a set of identifiable
QR codes which are easy to detect and uniquely identifiable (regardless of orientation). With four
unique AprilTags printed and placed on the corners of the maze, we can reliably detect and track
any maze of any size with a standard webcam. We initially solved for a homography [1] between
the four detected AprilTags [2] in the corners and a standard reference plane, which allowed us to
undistort the maze into a canonical view easily (see video1). We further extended this by using the
corners of each tag as reference locations, allowing us to use anywhere from 1 to 4 detected tags
in order to perform undistortion (see video2) although the tracking is more jittery as undetected
corners are only weakly constrained. The maze can be segmented into valid (red and black (due
to marble color)) and invalid (blue and white) in order to determine valid paths. Color-based
thresholds work sufficiently well in our conditions.

On top of our canonical view, the ball is tracked using color thresholds. Originally we’d used a
method for background modeling, but the specular highlights from the ceiling lights provided to be
hard to model for most background subtraction methods. Instead we use color thresholds, knowing

2

https://www.youtube.com/watch?v=MgCWEkhtqiQ
https://www.youtube.com/watch?v=UcLmpWmIVzE
https://www.youtube.com/watch?v=C0fqj4kVzac
https://www.youtube.com/watch?v=Qgi7-NjY1QI


Figure 2: Tracked ball position in canonical view. Output location is drawn with a gray circle on
top of our white mask image.

that our walls are blue or white, our maze floor is red, and the ball is black (s = min(r, g, b), b =
s < τ (with τ set to 1

10 of image brightness)). This image of b values is then filtered with a standard
morphological operation, opening [3] with a window size of 11× 11 in order to remove small, noisy
segments. After this, all objects in our canonical image, but the black marble, are removed. The
center-of-mass of this image is then returned as our ball position (and the total mass and standard
deviation of this signal is used as a confidence marker, when we’re correctly detecting only the
ball, the distribution and total energy of the ball are known). All of this information, including
the ball position, algorithm control parameters, and tracking statistics are output controlled and
outputted through redis.

Our results are from a standard VGA (640× 480) webcam, and we expect better results when
we use a high-end webcam. However, our results from the above method are fairly stable under test
conditions, but this solution is only tracking-by-detection, so there is plenty of room to explore
smoothing and tracking techniques, such as Kalman Filters [4] and Lucas-Kanade [5] tracking
respectively.

1.3 Maze solving
We implemented a pixel-level maze solver in Python using a handwritten breadth-first-search from
a detected target location. Maze solving is, in fact, the first published use of the BFS algorithm
[6]. The maze solver runs on a per-pixel level. Walls are marked as pre-visited and the detected
final location (green) is inserted into the queue as the starting location. The BFS solver is written
by us in C++, and directly uses the image pixels as the graph specification. The maze is solved
by back-tracking (which gives desired directions at every point in the maze). These back-tracks
are then transformed into desired locations by following each path until their direction changes.
As with the vision component, these are all done in normalized maze coordinate space [0,1], which
can be transformed into 3D coordinates using the known orientation of the Puma arm end-effector.
An example of this operation working on a randomly generated maze can be seen at Fig. 3.

In solving the maze, our handwritten solver allows for both L1 and L2 distance norms, the
former only allowing motion down cardinal axes, while the latter enables diagonal motion. While
the L1 (Manhattan distance) solver works correctly in theory, it is not tenable for robotics use
due to how ties are forced to be handled. If ties are broken with consistent preference direction,
we end up with artifacts where an entire maze corridor has a one pixel "go left" and all other
pixels stating "go down" (to get the the "left" pixel). Unfortunately, the real ball position has a
fixed size that never gets to this one-pixel boundary and so the ball is stranded. If ties are broken
randomly, then the target positions become very jittery, randomly jumping from "go down" to "go
left" from pixel to pixel, which isn’t desired for control. We originally only had an L1 solver and
had to implement an L2 solver to resolve this issue. The L2 solver generates diagonal motions
which resolve this problem.

An additional option in our maze solver is to either use per-pixel target locations with N pixels
of lookahead, or to use connected segments where all pixels with the same target path are grouped
into the same target location (since our maze is axis-aligned and structured in horizontal and
vertical corridors). We found the pixel-based solver was noisy without lookahead and hard to tune
for lookahead to work smoothly (sometimes it would look ahead too far, sometimes not enough).
We instead use our segmentation-based target path generation, where paths are followed until
target direction is changed; this requires no lookahead tuning. This solver, with an L2 distance

3



Figure 3: Maze solver

computation is what we ultimately used. The tracking code includes the solver code and outputs
these desired positions through redis.

A video of our initial maze detection, solving and tracking can be found here. The code is also
available.

1.4 Visualization and Simulation
In order to be able to simulate the robot’s control of the maze, the URDF file for the Puma was
modified such that the end effector has a model of the maze attached to it. The rolling ball on the
maze was defined as a PPP robot with a spherical shape with about 50 grams of mass defined as
the last link. Since the provided visualizer and simulator library through the CS225 git repository
only supported one robot, modifications were made to the code for the simulator and visualizer
based on the example codes in the SAI2 library. Pictures of the updated URDF and simulation of
a rolling ball on a plate are shown in Figure. 4.

1.5 Control
We’ve developed a simple control law that outputs the desired orientation that we want the maze
to be tilted to based on the position of the ball and then uses orientation control to achieve this
desired configuration. [

θy
θx

]
= −kp

[
x− xdes
y − ydes

]
− kv

[
ẋ− ˙xdes
ẏ − ˙ydes

]
(1)

The idea behind our control is that we keep the end effector at a fixed location, but rotate it
about either the x or y axes. To do this, we first calculate a θx and θy based off the equations
above. From here, we were able to calculate rotation matrices Rx and Ry based off of these angles.
Lastly, we were able to combine these angles to create the final rotation matrix Rf = Rx ∗Ry. We
then used the rotation matrix in our orientation control to set the final configuration of the end
effector. Note that while we did try to use derivative control, due to the time lag of the camera,
and having to calculate velocities based off camera frames, this worsened the characteristics of the

4

https://www.youtube.com/watch?v=fzB8c_e-nnU
https://github.com/leonidk/apriltrack


Figure 4: Updated URDF and Simulation of the Ball and the Maze

controller that we hoped to achieve. Namely, it led to less damping and higher overshoot. Hence,
our final version of the controller was purely consisted of proportional control.

Before we ran our control law for solving the maze, we first commanded the Puma using joint
coordinates to move the end effector to a position in space that was directly under the camera. We
also choose the initial position to be away from any singularities to increase the performance of
our controller. Once the end effector was in the desired position we switched to operational space
control, where we used the above control law to calculate the desired rotation matrix which was
then converted into a quaternion and sent to the robot. For the x-y-z position we sent the position
that the robot ended up at during the initial configuration and had it remain at that location as
the Puma was solving the maze.

2 Challenges
Initially, we attempted to fully define the dynamics of the maze by finding the full set of equations
of motion. However, we soon realized that even in a two dimensional system, this led, not only to
extremely complicated coupled equations, but also that we still did not know all of the necessary
variables such as the coefficient of friction. Instead, we implemented a closed loop controller and
were able to tune the gains until they were satisfactory for the physical system.

Over the course of this project, some of the major challenges we encountered were with the
simulations. During initial simulations, a strange behavior was observed where the ball didn’t fall
off the edge of the maze but rather kept rolling into infinity. After many hours of assessing the
code, it was found that this was caused by the small value of mass assigned to the ball. If the
mass is set to be extremely small, possible numerical errors in the program can lead to strange
behaviors where the gravity seems to be not active. This problem was solved by assigning a higher
mass value to the ball robot.

Another experienced problem was placing the two robots at correct locations with respect to
one another at the initial moment. If the ball bot was placed too close to the end effector it would
start in the collision phase, and the program would crash. On the other hand, if the robot ball
was placed too far from the plate it would start bouncing on the plate rather than rolling. In
addition, occasionally, in the middle of simulation the ball would stop rolling. When we further
inquired about these problems, we realized that there could be a variety of bugs either in or out
of our control that could cause these. Since the when the ball rolled, the control laws worked as
expected, we were advised to move on and try to implement our code directly on the Puma itself
instead of trying to fix the bug. We successfully did this, as we had felt we gained all the knowledge
we could from the simulation at that point.

In addition, when running our simulation the maze that we defined to be attached to the end
effector would sometimes separate from the end effector even though it was defined to be a set
distance away. This was an issue that we were not able to determine the cause of but instead used
redis keys to track how the end effector was moving.

When solving the maze tuning the gains was also time consuming to create a balance between
the speed of solving the maze and creating smooth movements in orientation. This is one area

5



where if we implemented our project again we could look into trajectory generation for orientation
control that would allow for smoother paths to send to the Puma compared to the GOTO strategy
that we used in our project.

3 Conclusion
Throughout the course of this project, we leaned to create a useful model, simulate it, and apply
it to a physical system. In our case, we had to first decide how we wanted to control our system
to navigate the ball through the maze. While initially, we decided we would need to know the
minute details about the system and create specific equations of motion, we eventually realized
we could create similar results by creating a closed loop feedback controller. Next, when it came
to simulation, we were able to numerically test our controller and determine if it produced the
results we expected from our mathematical calculations. While this worked within some level of
accuracy, the simulation fell short in some areas, and we decided to test our controller on the
Puma. Tuning the gains until we created a result that was reasonable created our finished product
which both worked and we were proud of. In moving from simulation to the Puma we also learned
of the differences in implementing code on actual hardware, such as how the gains needed to be
adjusted from simulation, and the use of the Puma driver which provided the physical information
of the Puma rather then the simulator. Ultimately, going through this process from calculations
to finished results was an invaluable experience.

A video example of our final prototype operating successfully is available in full or in part.

References
[1] O. D. Faugeras and F. Lustman, “Motion and structure from motion in a piecewise planar

environment,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 2,
no. 03, pp. 485–508, 1988.

[2] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA). IEEE, May 2011, pp. 3400–
3407.

[3] J. Serra, Image analysis and mathematical morphology, v. 1. Academic press, 1982.

[4] R. E. Kalman et al., “A new approach to linear filtering and prediction problems,” 1960.

[5] B. D. Lucas, T. Kanade et al., “An iterative image registration technique with an application
to stereo vision,” 1981.

[6] E. F. Moore, “The shortest path through a maze,” in Proc. Int. Symp. Switching Theory, 1959,
1959, pp. 285–292.

6

https://www.youtube.com/watch?v=MgCWEkhtqiQ
https://www.youtube.com/watch?v=UcLmpWmIVzE

	Final Implementation
	Hardware
	Vision
	Maze solving
	Visualization and Simulation
	Control

	Challenges
	Conclusion

