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1. Introduction and Problem Definition
Stock correlation networks are a widely used model to

analyze stock markets. However, using only the stock cor-
relation networks to make assertions about a market is naı̈ve
because they only capture the result of historic correlations,
and not their underlying dynamics. We propose using a col-
lections of other network topologies to obtain a diverse set
of feature-rich networks that have much more potential for
studying market behavior. Examples for such topologies
are networks based on business objective similarity, market
capitalization or geographic location.

Having assembled such a variety of topologies, we
benchmarked their performance against classical correla-
tion networks on a number of prediction tasks, such as link
prediction and anomaly detection. This allowed us to ver-
ify that the assembled networks capture salient information
of the underlying stock market dynamics. Additionally, we
evaluated how standard graph algorithms for link prediction
and graph visualization perform on the new topologies.

Additionally, we perform historical analysis using stock
market data from the 1920s through 2015, comparing the
topologies and structures of correlation networks through
time. To the best of our knowledge, this is the first work
looking at how basic properties of stock correlation net-
works change over long periods of time. Contrary to typ-
ically scale-free networks, which grow denser over time,
stock correlation networks over the 20th century exhibit a
large growth in node number.

2. Related work
2.1. Stock correlation networks

The first approach to capture the structure of the stock
exchange in a graph was established by [9], who proposed
an undirected ”stock market correlation network”.

In this definition, nodes represent equities and the edges
between nodes are determined by calculating pairwise cor-
relation of stock prices within a certain time and then either
thresholding the absolute correlation with a threshold value
θ ∈ [0, 1] or applying a graph-building algorithm such as
the minimum spanning tree method.

Many improvements on this method has been proposed,

such as picking correlation metrics that are robust to general
trends in the market [14] or ways to captures correlations
with lagged response [15].

[13] proposed extending the pure price correlation to a
cross-correlation of price and volume. Studies have also
revealed a number of interesting properties.

[3] discovered the node distribution in stock correlation
networks follows a power-law for sufficiently high thresh-
old θ. They also discovered the independent sets in the stock
network to be generally small, which indicates it is difficult
to design completely diversified portfolios.

Figure 1: Problem of using a minimum spanning tree to
build the stock correlation network: The edge between se-
curities 5 and 3 with weight 6 is lost although it has only
a slightly higher weight (=lower correlation) than the edge
between securities 2 and 3. This greatly alters the true un-
derlying topology of the graph, since, for instance, price
predictions of security 3 are now not dependent on security
5 anymore. Image obtained from [1], chapter 7

All the aforementioned work is similar in that it only
considers metrics that are observed on the stock market it-
self to build the financial network. This purely correlation-
based approach, however, cannot explain causal relation-
ships between the traded securities. This is a great obsta-
cle against applications such as portfolio building, since the
model lacks insight as to why stocks are (un-)correlated
in the past and if these conditions still hold true. Further,
much work in this field builds these networks using min-
imum spanning trees. This is problematic, since the min-
imum spanning tree is not guaranteed to preserve the true
topology of the graph, as Figure 1 demonstrates.
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2.2. Link Prediction and Expanding Network Dy-
namics

Link prediction is an area of research in social and in-
formation graphs that studies how edges evolve over time.
In social networks, link prediction is used in recommenda-
tion system, but it has also been applied to stock correlation
graphs.

[8] was one of the seminal papers in the field of link
prediction. It presented a suite of methods, ranging from
simple Jaccard similarity metrics to variations on PageR-
ank. They put emphasis on the robustness requirement for
good link predictors are capable of being robust to a few
spurious edges (for example, authors collaborating across
disjoint fields in their author dataset).

[16] presented a method for nonparametric link predic-
tion. Specifically, they evaluated their method on stock mar-
ket correlation graphs for the S&P500 stocks (500 high-
performing stocks). However, for stock market data, their
method wasn’t as strong as that of using Katz measures
[8]. This may be due to methodological issues, as they only
evaluate large-capitalization stocks, which, due to their size,
don’t exhibit much evolution over time.

Other methods looked at a network graph as a continu-
ally evolving system, where links can change as time flows.
[6] used a probabilistic model where the graph is broken
into subgraphs, and then pairwise models for prediction are
built explicitly for each pair in each subgraph. This ap-
proach scales well, as it takes the O(n3) modeling problem
of all pairwise interactions and turns it into aO(kn2) model
of distinct subgraphs. However, this partitioning approach
forces explicit group formation which is unable to model
nodes belonging to multiple groups simultaneously.

[2] presented a predictor that predicts not only a con-
nection but also its strength. It formulates the link predic-
tion problem as a supervised training of a random walk al-
gorithm. The supervision is used to force high PageRank
scores for nodes to be connected, and lower score other-
wise. This analytical formulation was interesting, as it can
easily be extended to include temporal regularization for a
historical network. This approach is fast, learns a small set
of interpretable weights, and might be very effective for un-
derstanding temporal dynamics in financial networks.

2.3. Anomaly Detection and feature representation

Anomaly detection is the study of finding anomalous el-
ement in data. In the context of network study, this could
mean the anomaly within a network, for example node with
high degree, but in our context it refers to the anomalous
behavior of a network. Chandola et al. provided a gen-
eral survey of anomaly detection. We adopted basic idea
about anomaly detection in finding a feature representation
for the network and use various classifier to detect anomaly.
However, we could not find more data on vector representa-

tion of a network. This could be because network is itself a
structure of great dimension, and representing it as a vector
was not a very common practice. Therefore, we decide to
use aggregate measurement of network as representation.

2.4. Kronecker graphs for graph topology approxi-
mation

[7] described Kronecker graph and stochastic Kronecker
graph model, as well as an efficient algorithm to fit a Kro-
necker graph to a given network. KronFit is an imple-
mentation of the Kronecker graph fitting algorithm devel-
oped using SNAP.

2.5. Semantic Similarity

In order to capture business interest, shareholder over-
lap, or other such semantic overlap in a graph topology,
we need some scoring function. Recent research in nat-
ural language processing has demonstrated the efficacy of
word-vector embeddings [12] in compactly capturing se-
mantic distance. These GLoVe vectors have been shown
to capture linear subspaces between companies and their
CEOs, based on a model learned from Wikipedia. [4] built
a semantic-similarity graph with such embedded word vec-
tors to perform analysis of semantic structures; we hope to
utilize them to capture relationships between businesses.

3. Methods and Algorithms
3.1. Data Collection

For the stock price data, we used the Center for Re-
search in Security Prices (CRSP) dataset, obtained from
the Wharton Research Data Services (WRDS), University
of Pennsylvania. This dataset comprises of daily prices
for over 26,500 stocks listed on the New York Stock Ex-
change (starting in 1925), the New York Stock Exchange
Archipelago Exchange (starting in 1962), the American
Stock Exchange (starting March 2006) as well as the NAS-
DAQ (starting in 1972). It is high-quality and professionally
curated. To get the geographical information about a com-
pany, we used the CRSP-Compustat Merged Dataset pub-
lished by the same source, which links the daily prices of
CRSP dataset with additional information about the compa-
nies.

For any time period, we can construct a correlation net-
work by calculating the cross-correlation of daily average
return and take a threshold on the absolute value of correla-
tion. Because stock correlations may change over time, we
need to define the time period over which to construct the
correlation network. Following the convention of previous
study we calculate the correlation ρij between time series i
and j as

ρij =

∑
t[(xi(t)− x̄i)(xj(t)− x̄j)]√∑

t(xi(t)− x̄i)2
√∑

t(xj(t)− x̄j)2
(1)
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where x̄i represents the mean value of discrete time series
xi. We then construct a network where node i and j is con-
nected if the absolute value of ρij is greater than a threshold.

For this project, we have largely followed the convention
set up by previous work in constructing a correlation net-
work, with the modification that we use the absolute value
of correlation as the criterion for connection. Future work
could look at alternative measures of correlation such as
time-lag correlation or nonlinear correlations.

To build a network as a reference of study, we selected
the daily average return data from the full year of 2014 of
New York Stock Exchange (NYSE) and NASDAQ trading
data, including only stocks that have valid and varying data
in the time period. Figure-2a shows the degree distribution
of this network, which exhibits a clear power law distribu-
tion. We call this network the canonical network in sub-
sequent sections and use it as the typical representation of
correlation networks.

3.2. Alternative Networks

Our goal is to explain connections in the correlation net-
work with alternative information not directly related to the
price. This would allows us to build a powerful, indepen-
dent predictor. One potentially useful source of information
was geography. Different countries and states have different
economic and regulatory policies as well as clustering effect
that can affect the performance of companies based mainly
in them. We extracted geographical information from the
CRSP-Compustat dataset and defined a network structure
where two stocks are connected if they share a state. This
definition creates a network that is a collections of cluster-
ing, one for each state or country.

Another piece of information we gathered was the se-
mantic information derived from the company name. We
used the GloVe distributed representation of English words
as the basis for the semantic feature vector [12]. The pre-
trained GloVe vectors available from the original source
was trained by crawling Wikipedia pages, which we con-
sider to encode useful information about companies. In-
tuitively, if two companies often appear together in a
Wikipedia article or web page, there is a higher possibil-
ity that they conduct related business and their stock price
might thus be more correlated. We applied a ranking selec-
tion method to select only those pairs of company names
with closest distance in the GloVe space. This allowed us
fine control on the number of edges we want the graph to
contain. As we can see in Table-1, we chose to have the
semantic network match canonical network in dimension as
close as possible. The resulting semantic network exhibits
power law distribution and also shows similar properties as
the canonical network. As Figure-2c shows, the seman-
tic network also have similar degree distribution with the
canonical network.

We also were interested in constructing graph weights
with alternative properties than simple correlation. To do
this, we incorporated the comparative size of companies in
the stock market by creating what we call the Market cap-
italization network. We processed the canonical network
into a directed version, where each edge in the canonical
network becomes a directed edge, pointing from the com-
pany with greater total market capitalization to the one with
smaller capitalization. As shown in Table-1, it has identical
properties to the canonical network except diameter.

3.2.1 Kronecker Graph

Another useful way of understanding a network is to fit a
Kronecker Graph model to it. We used KronFit algorithm
to efficiently fit a Kronecker graph to each of the networks
mentioned earlier [7]. Table-2 shows result of fit, where the
fitting result is a parameter matrix

Θ =

(
α β1
β2 c

)
By the Stochastic Kronecker Graph theorem, we see none of
the networks thus introduced is connected (geography net-
work is by definition a collection of separate clusters). We
can validate this by checking the largest weakly connected
component in the canonical graph, which only represents
about one third of the nodes in the network.

On the other hand, the semantic network exhibits the “gi-
ant component” shape that is typical of a real network. This
justifies our construction of the alternative networks.

To evaluate how well these information explain salient
information in the correlation network, we incorporated
them in tasks like link prediction and anomaly detection,
as discussed below.

3.3. Link Prediction

First we evaluated link-prediction performance. It can
reveal either the robustness of a topology (when evaluating
a given time instance of a graph), or serve as a method of
predicting future behaviors (when compared over pairs of
consecutive time instances). The former can be applied to
any graph, while the latter requires correlation-based graphs
(as geographical graphs and the like tend not to change over
time). We performed multiple classes of link prediction
methods and as described below.

3.3.1 Neighborhood Techniques

It has been shown that triangle closing is a valid measure
for collaboration networks, where x, if x and y share many
common neighbors at time t, they have good odds of col-
laborating together at some time after t [10]. From this line
of work, there are multiple methods that look at common
neighbors and possible triads as ways of predicting links.
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(a) Canonical Network (b) Geography Network

(c) Semantic Network (d) Market Cap Network

Figure 2: Degree distributions of different network structures.

Network Nodes Edges Power Law Coefficient Diameter Average Cluster Coefficient

Canonical 5483 23416 1.499 5.80 0.19
Geography 4370 620608 – 0.90 1.0
Semantic 4892 23416 1.509 5.69 0.23

Market Cap 5483 23416 1.499 6.83 0.19

Table 1: Properties of different network structures

Network α β1 β2 γ

Canonical 1 0.531 0.531 0.215
Semantic 1 0.544 0.518 0.233

Geography 1 0.601 0.601 0.560

Table 2: Resulting parameters of fitting Kronecker graph

Common Neighbors Probably the simplest indicator to
score whether two nodes should share an edge is to count
the number of shared neighbors between the two nodes as,
with Γ(x) indicating neighbors of x

C(x, y) = |Γ(x) ∩ Γ(y)| (2)

Common Neighbors with Weights A modification of the
common neighbors indicator is a weighted common neigh-
bors indicator, where nodes with larger weights exert more
influence. We formulate this as

Cw(x, y) = |Γ(wxx) ∩ Γ(wyy)| (3)

Jaccard similarity The Jaccard similarity intuitively cap-
tures the ratio of neighbors that are shared by two nodes to
the number of total neighbors of those nodes:

J(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

(4)
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Method Graph Accuracy Energy Energy/Random

Common Canonical 0.27 0.93 4.11
CommonW Canonical 0.34 0.94 4.16
Jaccard Canonical 0.00 0.72 3.18
Common MarketCap 0.28 0.94 4.16
CommonW MarketCap 0.34 0.95 4.20
Jaccard MarketCap 0.00 0.73 3.23
Common Semantic 0.21 1.11 1.00
CommonW Semantic 0.08 2.81 2.52
Jaccard Semantic 0.00 1.44 1.29
Common Geographic 1.00 1.00 1.02
CommonW Geographic 1.00 1.00 1.02
Jaccard Geographic 1.00 1.00 1.02

Table 3: Results from various link prediction methods and how well they perform at predicting graph structure and predicting
correlation

Figure 3: Degree Distribution for Link Prediction. Blue
region corresponds to degrees of dropped nodes. Green re-
gion corresponds to predicted nodes.

Figure 4: Correlation Coefficient Distribution

This scoring method penalizes nodes connections between
nodes which have high degree already, and instead treats
each link prediction based on the size of it’s shared neighbor

set.

3.3.2 Path Techniques

Another technique for computing similarity is based on
looking at the paths between nodes and various metrics on
top of the distribution of path lengths. As before, the sim-
plest link predictor is simply to score nodes based on their
shortest path in the network.

We implemented these techniques, but they tended to
perform very poorly. In our testing method, described be-
low, the results were no better than random. Alternatives
to simple shortest path were also unsucessful, as they tend
to (such as with the Katz [5] measure) simply damp further
connections.

3.4. Anomaly Detection

Anomaly detection is the problem of finding anoma-
lous dynamics or properties of the network. In this project
we would like to use network structure features to predict
stocks that are high-performing stocks and analyze whether
features from of one year (the reference network) can imply
performance of that stock in the next year. In this sense,
we define a high-performer as a stock whose price rises by
at least 10% above the average price increase of the overall
stock market. As an example, if the average stock market
price increases by 10%, a high-performing stock must in-
crease by at least 20% in price.

We posed this problem as a binary classification prob-
lem. In the first step, we extracted features of a stock in
the reference network. We extracted the following node-
specific features:

1. PageRank [11]

2. Node degree
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3. Betweenness centrality

4. Farness centrality

5. Closeness centrality

6. Degree centrality

We then extracted the same features for both the syntactic
and the geographical networks. We further considered the
following domain-specific features:

1. Split-adjusted market capitalization

2. Split-adjusted market price

3. Which exchange (New York Stock Exchange vs. Nas-
daq)

4. Shares outstanding

We then fed these features into a binary classifier. We con-
sidered linear Support Vector Machine classifier (SVM), lo-
gistic regression, as well as Random Forests (of 100 trees
with maximum depth 8) as classifiers. We trained and tested
our classifier on the stock correlation networks from the
years 1925 to 1999. After that, we tested the effect of in-
cluding features from previous years to study the effect of
time-dependent knowledge in anomaly detection.

3.5. Historic graph similarity

We analyzed how a stock correlation network compares
to historical stock correlation networks in the past. We hope
this will be useful for identifying possible boom periods and
recessions. We implemented this by extracting a number of
graph-specific features, such as network diameter, the aver-
age cluster coefficient, the node and edge count, the average
and median degree, as well as the power law coefficient α
resulting from a power-law fit. These features are standard-
ized by subtracting the mean and dividing by the standard
deviation. We then calculated the euclidean similarity of
these feature vectors across years.

As additional feature to consider, we fit Kronecker
graphs to each year’s network. This yields the Kronecker
base matrix, as described in 3.2.1. This not only yields an-
other distance metrics between stock correlation networks
of different years, namely the l2 distance of the 2 Kronecker
parameter matrices. It also allows us to investigate the de-
velopment of the kronecker fit parameters α, β1, β2 and γ
over time, which encode valuable information about graph
structure.

4. Results and Findings
In order to evaluate the quality of various network

topologies, we setup various experiments with numerical
benchmarks.

4.1. Link Prediction

In order to test the strength of various topologies, in
terms of both their own robustness and in terms of predict-
ing stock correlation, we implement Link Prediction.

Our experimental setup is fairly straightforward. We take
a graph, drop one percent of its edges and run a link pre-
diction algorithm. Algorithms are scored on two metrics,
how many of the dropped edges they predicted successfully
and how much correlation energy the predicted edges con-
tribute. If the network is a stock correlation network than
the latter metric can only be optimized by successful pre-
diction, but in other topologies, the link prediction algo-
rithm may pick nodes that have higher correlation energy
than those randomly dropped. We repeat these experiments
20 times and report their results in Figure-3.

On the correlation networks, the common neighbors pre-
dictor predicted about 30% of links correctly, with a slightly
higher score for its weighted alternative (as described ear-
lier). Of the mispredicted edges, many of them still had high
correlation energy, and we were able to capture more than
90 % of the correlation energy that was lost. Results were
slightly better with weights, and improved with our market
capitalization.

However, examining the predictions of these networks,
as shown in figure 3, they tended to have very high degree.

To cope with this issue, we tested Jaccard similarity
metric, which only looks at percentage of shared common
neighbors, not absolute number. However, this method pre-
dicted none of the dropped edges, although it was capable
of recovering over 70% of the lost correlation network. Of
interest, it often predicted nodes between large, well known
companies, such as Apple and Berkshire Hathaway.

On correlation networks, all of these methods were ca-
pable of predicting edges with strength 3 to 4 times that of
an average possible edge in the network (the distribution of
which can be seen in figure Figure-4.

With semantic networks, we saw behavior that was very
surprising. Common neighbors predicted twenty percent
of dropped edges, and the predicted edges tended to have
strong correlation. The weighted neighbor predictor that
we presented got worse accuracy, but was capable of recov-
ering a large fraction of the stock correlation energy (two
and half times that of a random performing link predictor).
This shows that semantic networks capture some informa-
tion that is present in correlation networks, without needing
to refer to correlations themselves.

On geographical networks, due to our clustering con-
struction, the link predictors succeed in recovering all of
the dropped edges.

4.2. Anomaly Detection

Our dataset comprised 74 stock correlation networks
covering years 1925 to 1999. This translates to a total
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Figure 5: Showing how diameter and best-fit power law
parameter (α) evolve over time

of approximately 206, 000 stocks represented by nodes,
of which approximately 10% each year were identified as
high-performers. A classifier assigning the high-performer
label at random would thus achieve an accuracy of around
90%.

In our first experiment, we trained different classifiers
to predict next year’s high performers based on this year’s
stock correlation network graph features concatenated with
the graph features of the geographical and semantic net-
works. We found that none of our classifiers outperformed
the random baseline.

Next, we test the performance of classifiers trained on
both the graph features and the domain-specific features.
We thus concatenate those two feature vectors, yielding a
feature vector of a length of 10. We again train the same
classifiers as above, but now also include a SVM with a
radial basis function kernel to allow for the fitting of a po-
tentially non-linear decision boundary. However, the results
remain the same - none of the classifiers outperformed the
random baseline.

Lastly, we concatenated feature vectors of the previous 5
years to allow our classifier to consider temporal informa-
tion. Again, however, none of the classifiers were able to
outperform the random baseline.

These results are intuitive - while it is an ongoing discus-
sion if markets are completely efficient, they can certainly
be assumed to be efficient enough to price in all informa-
tion that could be extracted by a linear classifier. It is thus
likely impossible to robustly predict high performers in the
market with high confidence.

4.3. Historic graph similarity

In figure 5, we plot the development of two remarkable
measures for this experiment: The diameter of the networks
as well as the α of the power law fit. The development of the

1920 1930 1940 1950 1960 1970 1980 1990
Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ag

ni
tu

de

Evolution of Kronecker graph parameters over time

alpha
beta1
beta2
gamma

Figure 6: A view of stock markets evolve over time as pa-
rameterized by best-fit Kronecker Graph models

diameter is remarkable, because in real-world datasets, net-
works usually grow denser and the diameter increases - this
does not seem to be the case for stock correlation networks.
We further compute the Kronecker fits for each graph in the
timespan from 1925 to 1999. 6 depicts the development
of the Kronecker graph parameters over time. We find that
β+γ < 1, and thus that stock correlation networks are never
connected over this time period. Further, we find that since
α is always close to one, (α+β)∗ (β+γ) > 1 and thus, al-
though the correlation threshold is held constant over time,
the stock correlation networks keep natural properties.

5. Conclusion

In this project, we have dissected the classic stock cor-
relation network as a way to analyze stock markets. By
developing geographic and semantic networks and using
them to predict links in the stock correlation network, we
have shown that feature network can explain some correla-
tions in the stock correlation network. We have analyzed
the use case of stock correlation networks for predicting
high-performers in stock markets and have shown that stock
correlation networks themselves are unlikely to contain the
information necessary for this feat. We used the Kronecker
graph as a meaningful way to describe developments of net-
works over time and have used this analysis tool to depict
the development of the stock market within the last century.
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