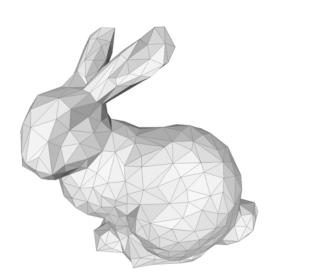
Direct Fitting of Gaussian Mixture Models

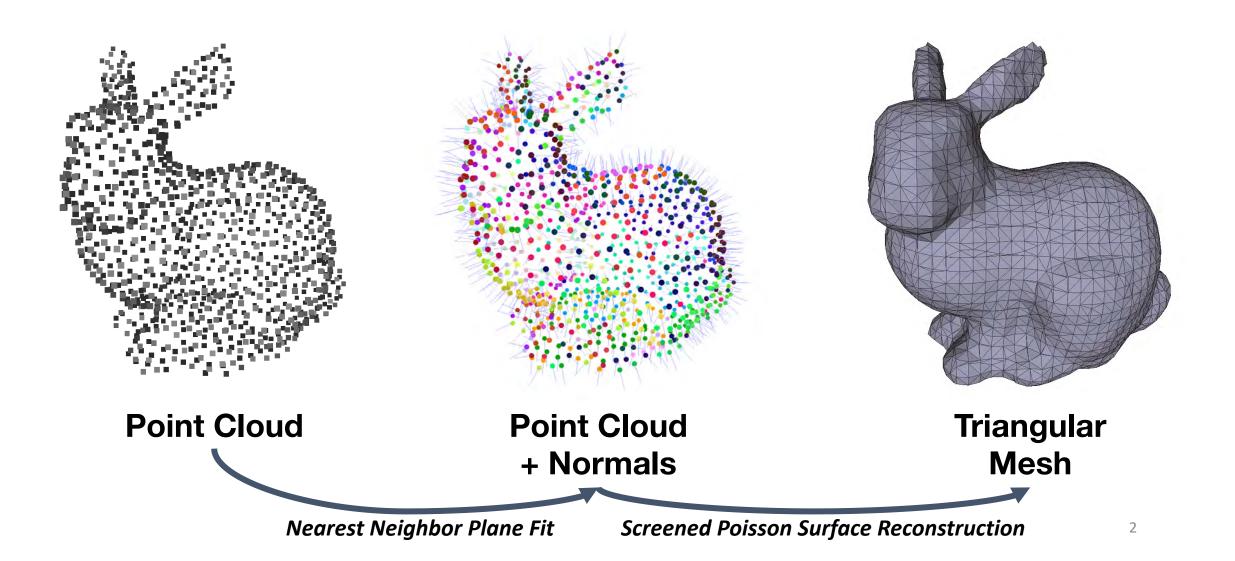
Leonid Keselman, Martial Hebert



Robotics Institute Carnegie Mellon University May 29, 2019

https://github.com/leonidk/direct_gmm

Representations of 3D data

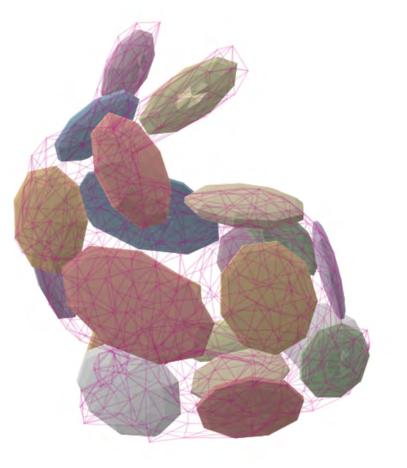


Gaussian Mixture Models for 3D Shapes

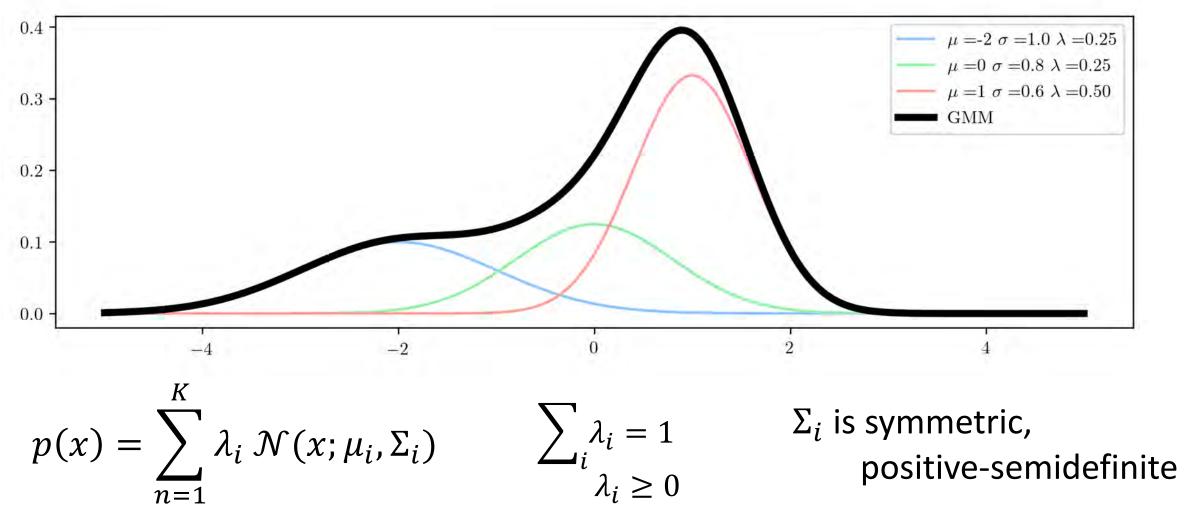
GMM fit to object surface

Benefits

- Closed-form expression
- Can represent contiguous surfaces
- Easy to build from noisy data
- Sparse



Gaussian Mixture Model (GMM)



Gaussian Mixtures as a shape representation

Efficient Representation

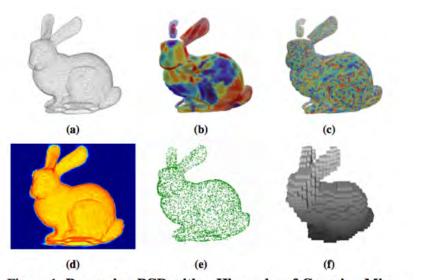
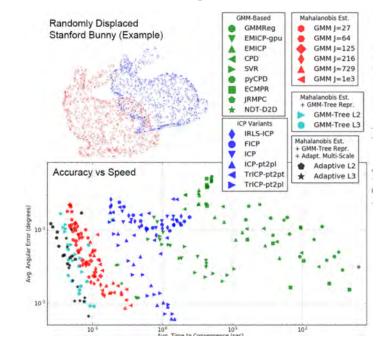


Figure 1. Processing PCD with a Hierarchy of Gaussian Mixtures: (a) Raw PCD from Stanford Bunny (35k vertices), (b) and (c) Two levels of detail extracted from the proposed model. Each color denotes the area of support of a single Gaussian and the ellipsoids indicate their one σ extent. Finer grained color patches therefore indicate higher statistical fidelity but larger model size, (d) a log-scale heat-map of a PDF from a high fidelity model. (e) stochastically re-sampled PCD from the model (5k points), (f) occupancy grid map also derived directly from the model.

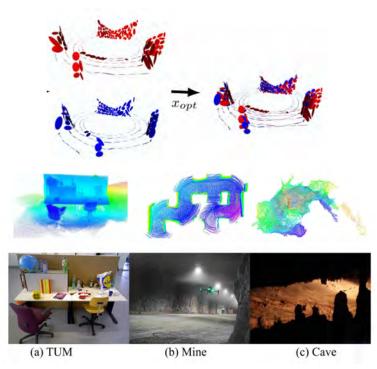
B. Eckart, K. Kim, A. Troccoli, A. Kelly, J. Kautz. CVPR (2016)

Mesh Registration



B. Eckart, K. Kim, J. Kautz. *ECCV (*2018)

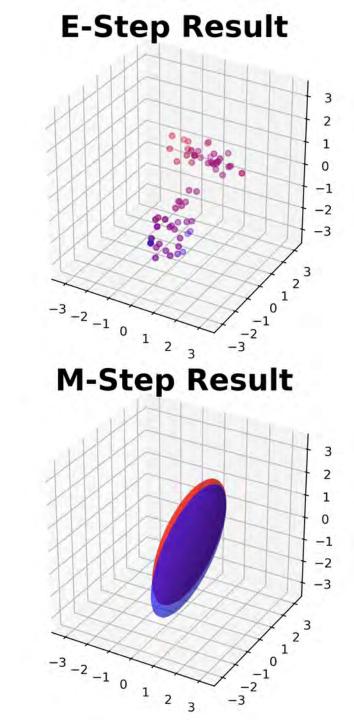
Frame Registration

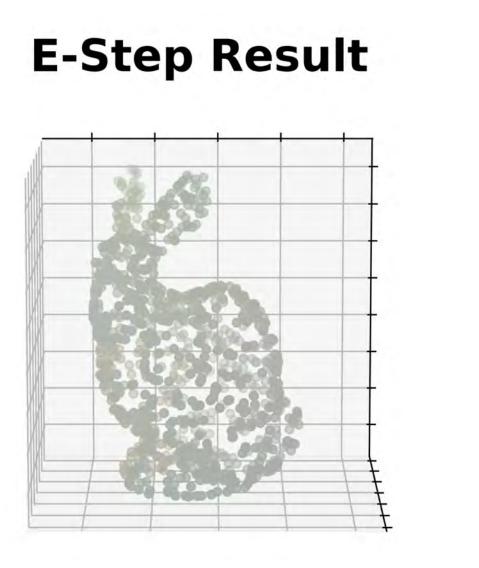


W. Tabib, C. O'Meadhra, N. Michael IEEE *R-AL* (2018)

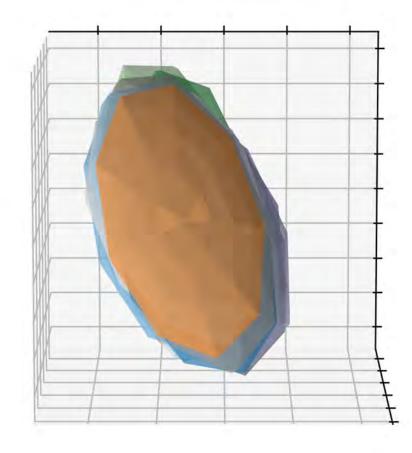
Fitting a Gaussian Mixture Model

- 1. Obtain 3D Point Cloud
- 2. Select Initial Parameters
- 3. Iterate Expectation & Maximization
 - i. E-Step: Each point gets a likelihood
 - ii. M-Step: Each mixture gets parameters





M-Step Result



The E-Step (Given GMM parameters)

$$\eta_{ij} = \frac{1}{C_j} \lambda_i \mathcal{N}(x_j; \mu_i, \Sigma_i)$$
Affiliation between point j & mixture i

$$C_j = \sum_k \lambda_k \, \mathcal{N}(x_j; \mu_k, \Sigma_k)$$

Normalization constant for point j

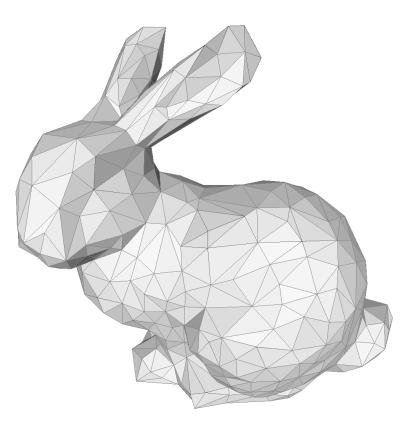
The M-Step (Given point-mixture weights)

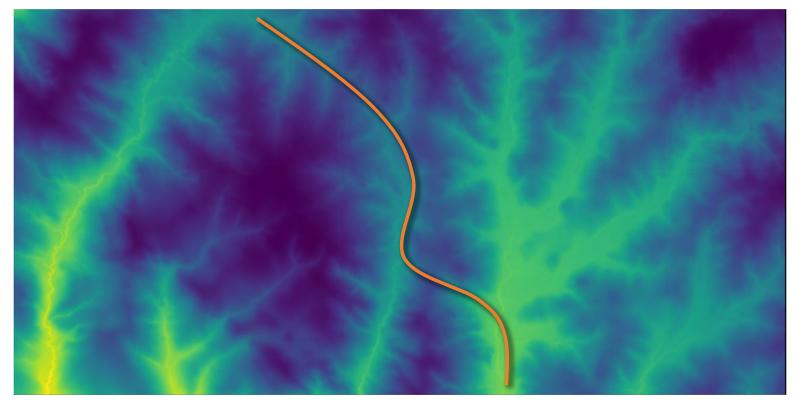
$$LB = \sum_{j=1}^{M} \sum_{i=1}^{K} \eta_{ij} \log(\lambda_i \mathcal{N}(x_j; \mu_i, \Sigma_i)) \quad \text{lower-bound loss}$$

To get new parameters: takes derivatives, set equal to zero, and solve

$$w_{ij} = \eta_{ij}$$

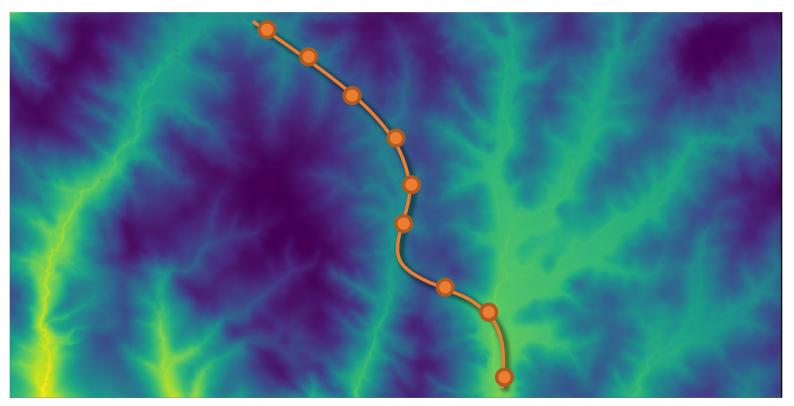
$$\frac{\partial LB}{\partial \lambda_i} = 0 \qquad \frac{\partial LB}{\partial \mu_i} = 0 \qquad \frac{\partial LB}{\partial \Sigma_i} = 0 \qquad W_i = \sum_j w_{ij}$$
$$\lambda_i = \frac{W_i}{M} \qquad \mu_i = \frac{1}{W_i} \sum_j w_{ij} x_j \qquad \Sigma_i = \frac{1}{W_i} \sum_j w_{ij} (x_j - \mu_i) (x_j - \mu_i)^T$$





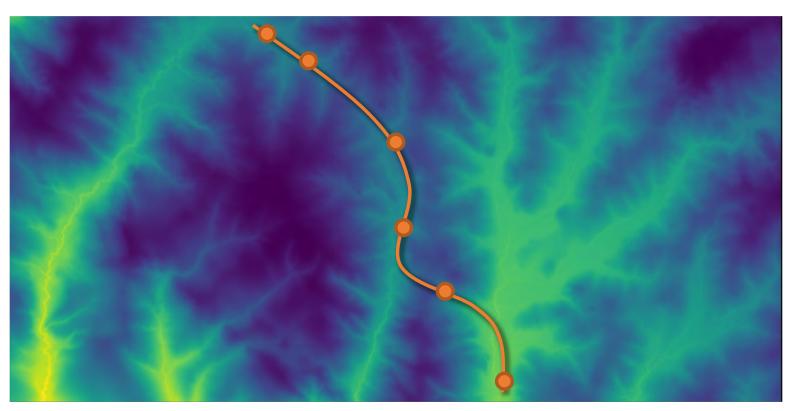
Known curve in a given 2D probability distribution

 $\ell(\text{curve}) \cong \prod_{i=1}^{N} p(x_i)$



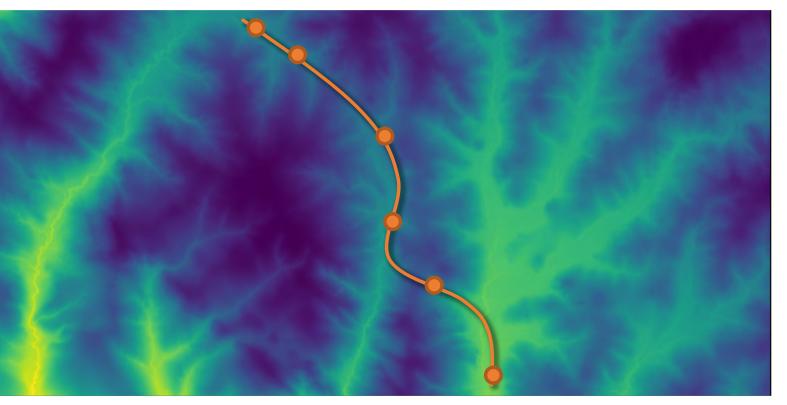
Consider sampling N points from this curve

$$\ell$$
 (curve) $\cong \left(\prod_{i=1}^{N} p(x_i)\right)^{\frac{1}{N}}$



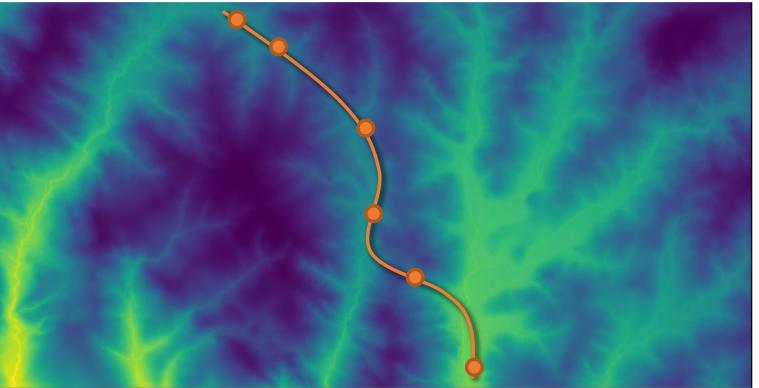
Take a geometric mean to account for sample number

$$\ell(\text{curve}) \cong \left(\prod_{i=1}^{N} p(x_i)\right)^{\frac{1}{N}}$$
$$\ell(\text{curve}) = \lim_{N \to \infty} \left(\prod_{i=1}^{N} p(x_i)\right)^{\frac{1}{N}}$$
$$= \lim_{N \to \infty} \exp\left(\log\left(\prod_{i=1}^{N} p(x_i)\right)^{\frac{1}{N}}\right)$$
$$= \lim_{N \to \infty} \exp\left(\frac{1}{N} \sum_{i=1}^{N} \log(p(x_i))\right)$$



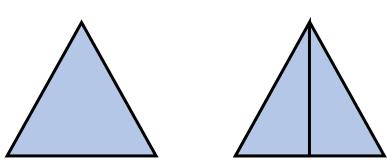
The curve will be the value in the limit

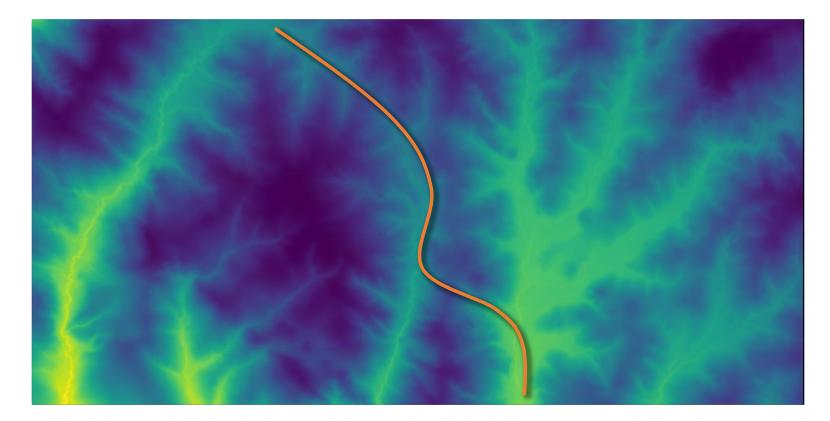
$$\ell(\text{curve}) \cong \left(\prod_{i=1}^{N} p(x_i)\right)^{\frac{1}{N}}$$
$$\ell(\text{curve}) = \lim_{N \to \infty} \left(\prod_{i=1}^{N} p(x_i)\right)^{\frac{1}{N}}$$
$$= \lim_{N \to \infty} \exp\left(\log\left(\prod_{i=1}^{N} p(x_i)\right)^{\frac{1}{N}}\right)$$
$$= \lim_{N \to \infty} \exp\left(\frac{1}{N} \sum_{i=1}^{N} \log(p(x_i))\right) = \exp\left(\int \log(p(x)) \, dx\right)$$

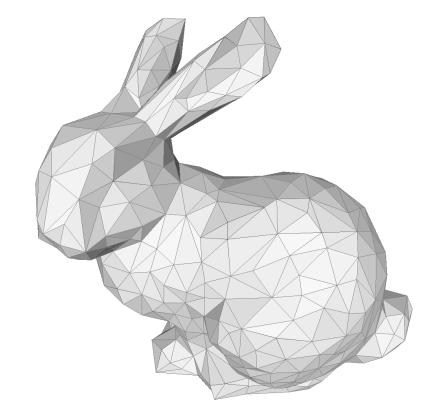


$$L = \exp\left(\int \log(p(x)) \, dx\right)$$

1. If p(x) = 0 on curve, then L= 0 2. Invariant to reparameterization







 α_j Area of each triangle μ_j Centroid of each triangle A_j, B_j, C_j Triangle vertices

The E-Step (Given GMM parameters)

$$\eta_{ij} = \frac{1}{C_j} \lambda_i \, \mathcal{N}(x_j; \mu_i, \Sigma_i)$$
Affiliation between point j & mixture

$$C_j = \sum_k \lambda_k \, \mathcal{N}(x_j; \mu_k, \Sigma_k)$$

Normalization constant for point j

 α_j Area of each triangle μ_j Centroid of each triangle A_i, B_i, C_j Triangle vertices

The New E-Step (Given GMM parameters)

$$\eta_{ij} = \frac{1}{C_j} \lambda_i \alpha_j \mathcal{N}(\mu_j; \mu_i, \Sigma_i)$$

Taylor Approximation (2 terms)

Affiliation between object j & mixture i

$$C_j = \sum_k \lambda_k \alpha_k \mathcal{N}(\mu_j; \mu_k, \Sigma_k)$$

Normalization constant for object j

 α_j Area of each triangle μ_j Centroid of each triangle A_i, B_i, C_j Triangle vertices

The M-Step (Given point-mixture weights)

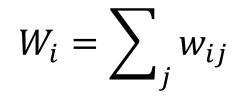
$$\lambda_i = \frac{W_i}{M}$$

$$1 \quad \mathbf{\nabla}$$

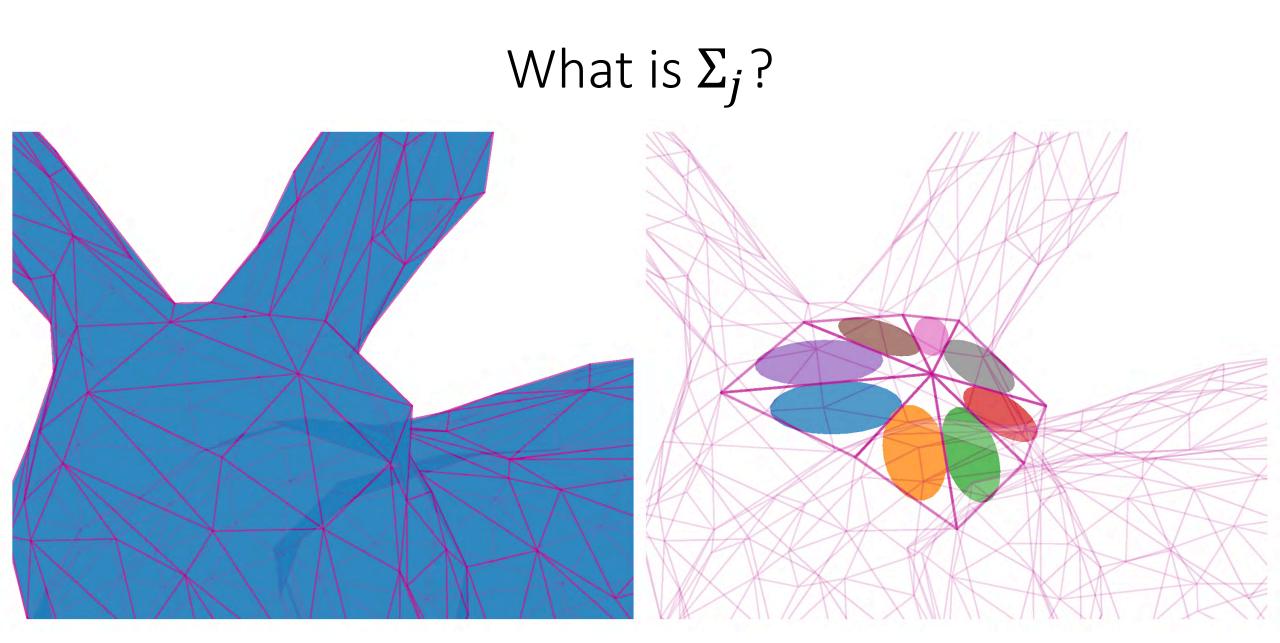
$$\mu_i = \frac{1}{W_i} \sum_j w_{ij} x_j$$

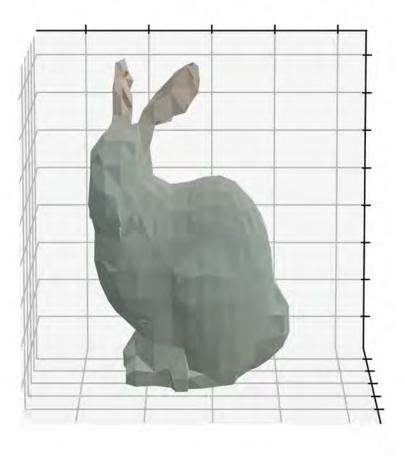
$$\Sigma_i = \frac{1}{W_i} \sum_j w_{ij} (x_j - \mu_i) (x_j - \mu_i)^T$$

$$w_{ij} = \eta_{ij}$$

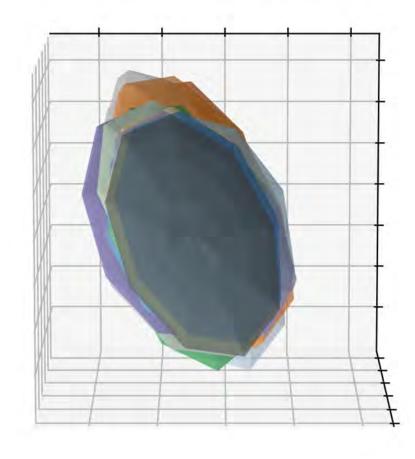


The New M-Step (Given point-mixture weights)



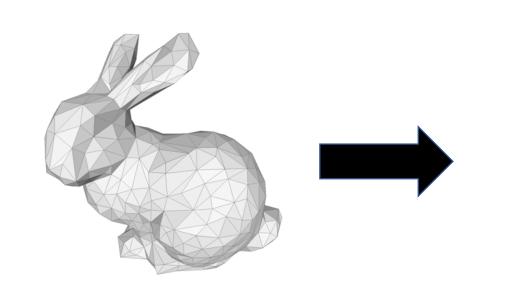


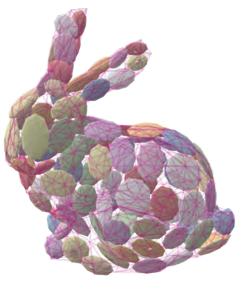
M-Step Result



Results

Did all that math actually help us fit better/faster GMMs?





Using different inputs

classic algorithm

- Vertices of the mesh
- Triangle centroids

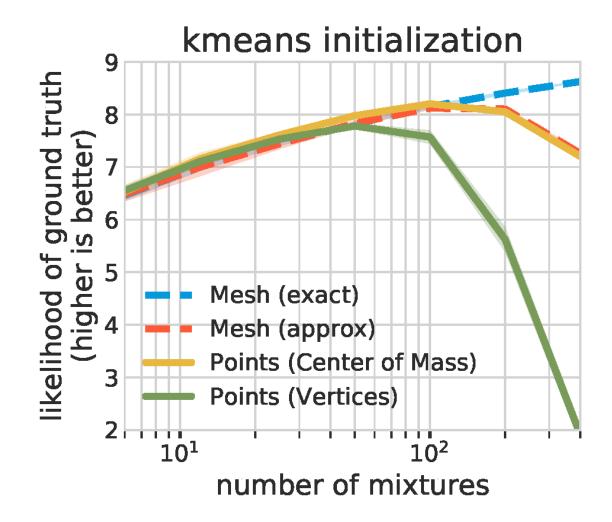
our method

- Approximate (E only)
- Exact (E + M steps)

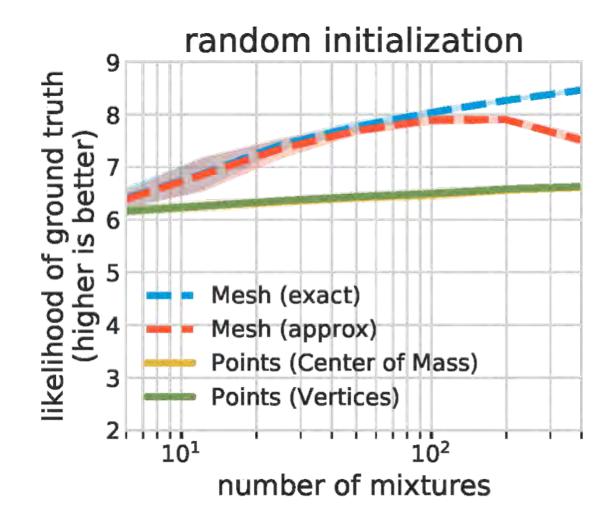
Evaluate across a wide range of mixtures (6 to 300)

Measure the likelihood of a high-density point cloud (higher is better)

Full E+M method works in all cases



Stable under even random initialization!

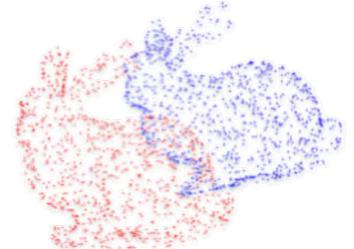


Applications

Are these models actually more useful?

Mesh Registration (P2D)

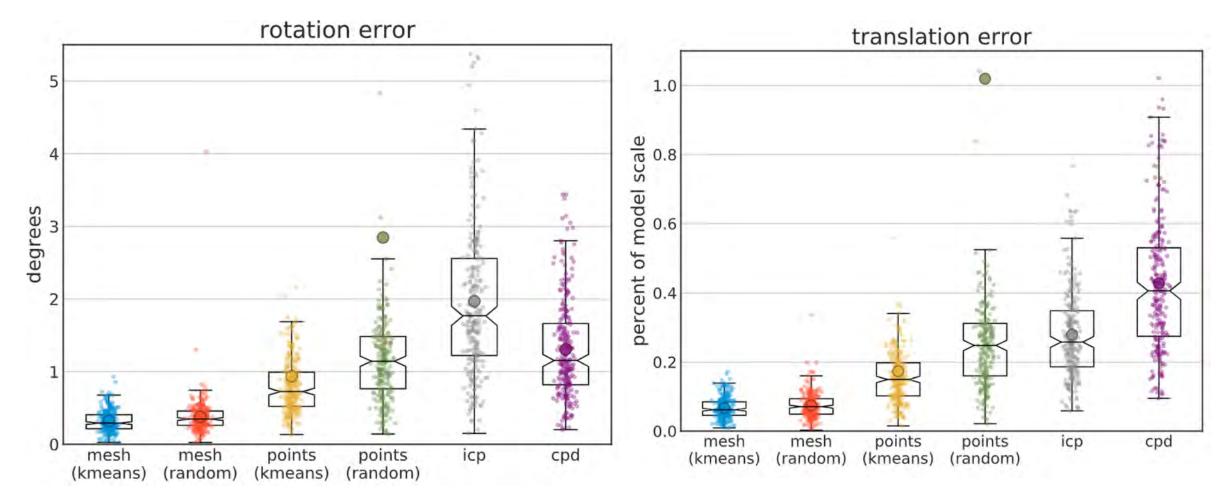
Method



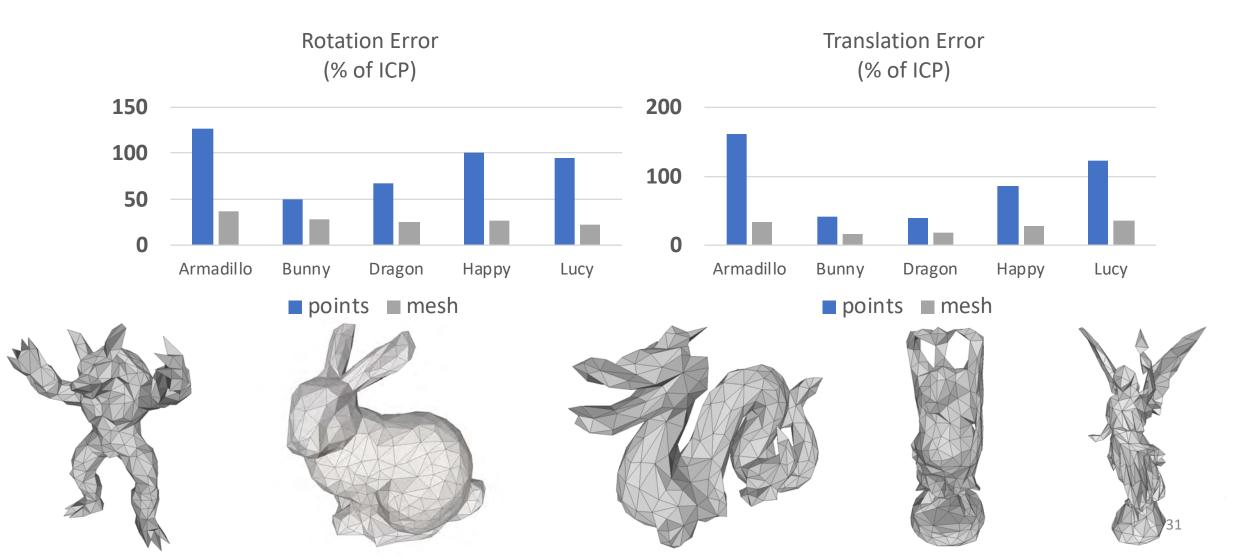
- 1. Apply a random rotation + translation to the point cloud
- 2. Find transformation to maximize the likelihood of the points
 - Perform P2D with GMMs fit to
 - i. mesh vertices
 - ii. mesh triangles

Eckart, Kim, Kautz. "HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration." ECCV (2018)

Mesh-based GMMs are more accurate



Across multiple models



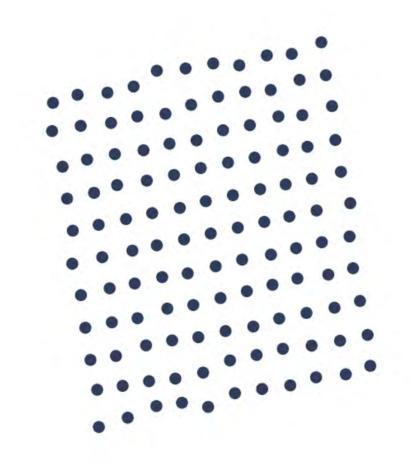
Frame Registration (D2D)

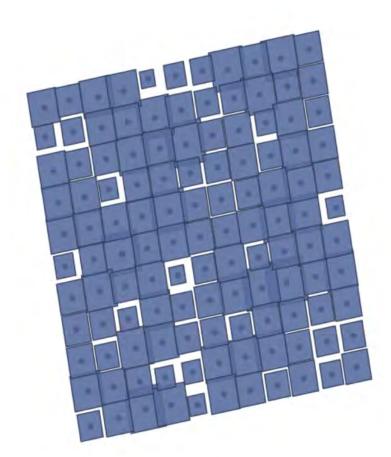
Method

- The second secon
- 1. Use a sequence from an RGBD Sensor
 - 2,500 frame TUM sequence from a Microsoft Kinect
- 2. Pairwise registration between t & t-1 frames
 - Optimize the D2D L2 distance
 - Build GMMs using square pixels as the geometric object

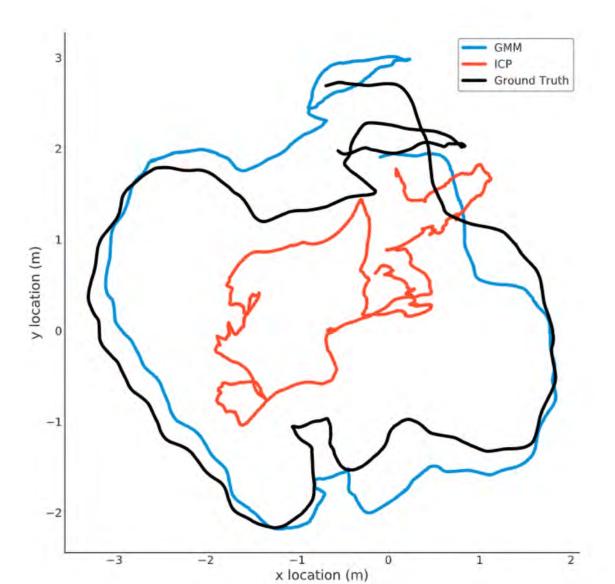
W. Tabib, C. O'Meadhra, N. Michael. "On-Manifold GMM Registration" *IEEE R-AL* (2018)

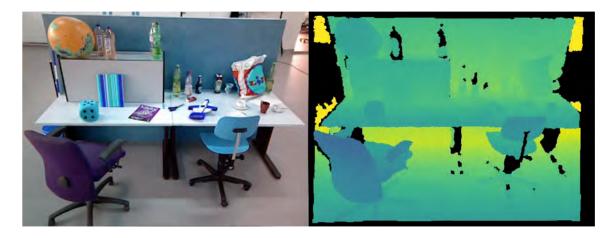
Representing points using pixel squares





D2D Registration Results

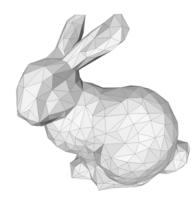


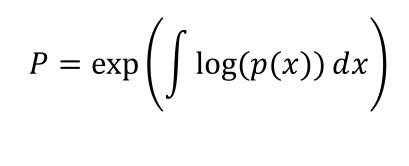


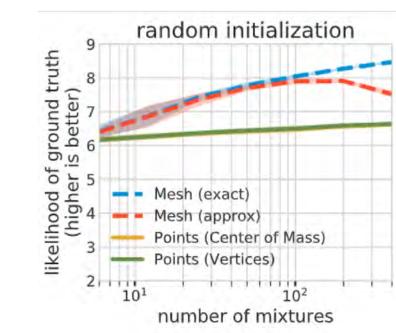
Compared to standard GMM

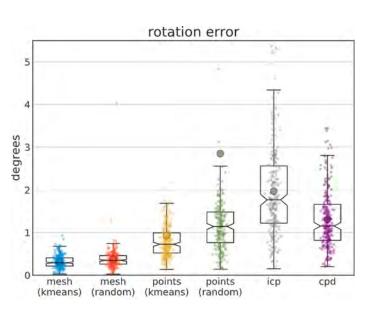
- 2.4% improvement in RMSE
- 22% faster D2D convergence

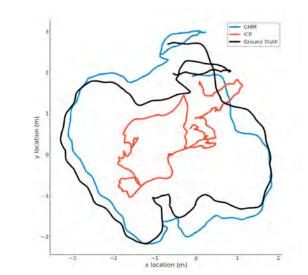
Questions?



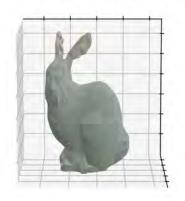




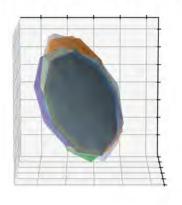




E-Step Result



M-Step Result

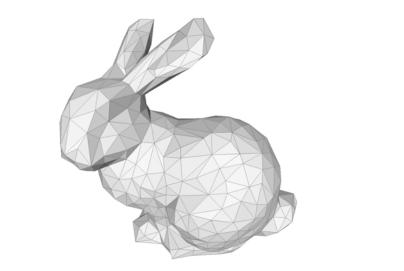


The End!

Extra Slides

How to fit a Gaussian Mixture Model?

- 1. Obtain any collection of objects
- 2. Perform Expectation + Maximization
 - i. E-Step: Each point gets a likelihood
 - ii. M-Step: Each mixture gets new parameters



Extension to arbitrary primitives

$$\mu_i = \frac{1}{W_i} \sum_p^P w_{ip} \mu_p$$

$$\Sigma_i = \frac{1}{W_i} \sum_p^P w_{ip} \left[(\mu_p - \mu_i)(\mu_p - \mu_i)^T + \Sigma_p \right]$$

Vasconcelos, Lippman. "Learning mixture hierarchies." Advances in Neural Information Processing Systems (1999)

Approximation

$L \approx L_S = \prod_{j=1}^{M} \left(\sum_{i=1}^{K} \pi_i \ \mathcal{N}(\mu_j; \mu_i, \Sigma_i) \right)^{\frac{\alpha_j}{\sum_k \alpha_k}}$

area-weighted geometric mean using the primitive's centroids

Product Integral Formulation

- Product integrals provide a resampling-invariant loss function
- Given S samples, of M primitives, with N mixture components

$$L = \prod_{j=1}^{M} \prod_{k=1}^{S} \sum_{i=1}^{K} \pi_i \mathcal{N}(x_{jk}; \mu_i, \Sigma_i)$$

• This can be evaluated in the limit of samples (with a geometric mean)

$$\begin{split} L &= \prod_{j=1}^{M} \lim_{S \to \infty} \left[\prod_{k=1}^{S} \left(\sum_{i=1}^{K} \pi_{i} \ \mathcal{N}(x_{jk}; \mu_{i}, \Sigma_{i}) \right)^{\frac{1}{S}} \right] \\ &= \prod_{j=1}^{M} \lim_{S \to \infty} \left[\exp\left(\log \prod_{k=1}^{S} \left(\sum_{i=1}^{K} \pi_{i} \ \mathcal{N}(x_{jk}; \mu_{i}, \Sigma_{i}) \right)^{\frac{1}{S}} \right) \right] \\ &= \prod_{j=1}^{M} \lim_{S \to \infty} \left[\exp\left(\sum_{k=1}^{S} \frac{1}{S} \log\left(\sum_{i=1}^{K} \pi_{i} \ \mathcal{N}(x_{jk}; \mu_{i}, \Sigma_{i}) \right) \right) \right] \\ &= \prod_{j=1}^{M} \exp\left(\int_{\Delta} \log\left(\sum_{i=1}^{K} \pi_{i} \ \mathcal{N}(x; \mu_{i}, \Sigma_{i}) \right) dx \right) \end{split}$$

$$\begin{aligned} Q(\theta) &= \log \prod_{j=1}^{M} \sum_{i=1}^{N} p(x_j, z_i | \theta_i) \\ &= \sum_{j=1}^{M} \log \sum_{i=1}^{N} p(x_j, z_i | \theta_i) \\ &= \sum_{j=1}^{M} \log \sum_{i=1}^{N} \eta_{ij} \frac{p(x_j, z_i | \theta_i)}{\eta_{ij}} \\ &= \sum_{j=1}^{M} \log \mathbb{E}_{z|x,\theta} \left[\frac{p(x_j, z_i | \theta_i)}{\eta_{ij}} \right] \\ &\geq \sum_{j=1}^{M} \mathbb{E}_{z|x,\theta} \left[\log \frac{p(x_j, z_i | \theta_i)}{\eta_{ij}} \right] \\ &\geq \sum_{j=1}^{M} \sum_{i=1}^{N} \eta_{ij} \log \frac{p(x_j, z_i | \theta_i)}{\eta_{ij}} \\ &\geq \sum_{j=1}^{M} \sum_{i=1}^{N} \eta_{ij} (\log p(x_j | z_i, \theta_i) - \log \eta_{ij}) \\ &= \sum_{j=1}^{M} \sum_{i=1}^{N} \eta_{ij} (\log p(x_j | z_i, \theta_i) - \log \eta_{ij}) \\ &\theta \leftarrow \operatorname{argmax} \sum_{j=1}^{M} \sum_{i=1}^{N} \eta_{ij} \log(\pi_i \mathcal{N}_i(x_{jk}; \mu_i, \Sigma_i)) \end{aligned}$$

$$\begin{split} \phi_{\Delta}(h(x)) &= ||T_u \times T_v|| \int_0^1 \int_0^{1-v} f(T(u,v)) \ dudv \\ &= ||T_u \times T_v|| \int_0^1 \int_0^{1-v} \mathcal{N}(M;\mu,\Sigma) (1 - (T(u,v) - M)^T K_1 + (T(u,v) - M)^T K_2(T(u,v) - M)) dudv \\ &= ||T_u \times T_v|| \mathcal{N}(M;\mu,\Sigma) \int_0^1 \int_0^{1-v} (1 - (T(u,v) - M)^T K_1) + (T(u,v) - M)^T K_2(T(u,v) - M)) dudv \\ &= ||T_u \times T_v|| \mathcal{N}(M;\mu,\Sigma) (\frac{1}{2} + \int_0^1 \int_0^{1-v} (-(T(u,v) - M)^T K_1 + (T(u,v) - M)^T K_2(T(u,v) - M)) dudv) \\ &= ||T_u \times T_v|| \mathcal{N}(M;\mu,\Sigma) (\frac{1}{2} - 0 + K_2 \int_0^1 \int_0^{1-v} (T(u,v) - M)^2 dudv) \\ &= ||T_u \times T_v|| \mathcal{N}(M;\mu,\Sigma) (\frac{1}{2} - 0 + K_2 \int_0^1 \int_0^{1-v} (A + (B - A)u + (C - A)v - M)^2 dudv) \\ &= ||T_u \times T_v|| \mathcal{N}(M;\mu,\Sigma) (\frac{1}{2} - 0 + \frac{K_2}{36} (A \circ (1 - (B + C)) + B \circ (1 - C) + C \circ C)) \\ &\approx \frac{||T_u \times T_v||}{2} \mathcal{N}(M;\mu,\Sigma) \end{split}$$

$$\begin{aligned} \frac{\partial LB}{\partial \Sigma_{i}^{-1}} &= \frac{1}{2} \sum_{j=1}^{M} \int_{\Delta_{j}} \left[\eta_{ij} \left(\Sigma_{i} - (x_{j} - \mu_{i})(x_{j} - \mu_{i})^{T} \right) \right] d\Delta_{j} \\ &= \frac{1}{2} \sum_{j=1}^{M} \left(R_{j} \eta_{ij} \Sigma_{i} - \eta_{ij} \int_{\Delta_{j}} \left[(x_{j} - \mu_{i})(x_{j} - \mu_{i})^{T} \right] d\Delta_{j} \right) \end{aligned} \tag{25}$$

$$\begin{bmatrix} \int_{\Delta} \left[(x - \mu)(x - \mu)^{T} \right] d\Delta \right]_{01} &= \int_{\Delta} (x_{0} - \mu_{0})(x_{1} - \mu_{1}) d\Delta \end{aligned}$$

$$= \begin{bmatrix} \frac{2R}{24} \left(A_{0}(2A_{1} + B_{1} + C_{1}) + B_{0}(A_{1} + 2B_{1} + C_{1}) + C_{0}(A_{1} + B_{1} + 2C_{1}) \right) + \frac{2R}{2} \left(-M_{1}\mu_{0} - M_{0}\mu_{1} + \mu_{0}\mu_{1} \right) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2R}{24} \left(3M_{0}3M_{1} + A_{0}A_{1} + B_{0}B_{1} + C_{0}C_{1} \right) + \frac{2R}{2} \left(-M_{1}\mu_{0} - M_{0}\mu_{1} + \mu_{0}\mu_{1} \right) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{2R}{24} \left(A_{0}A_{1} + B_{0}B_{1} + C_{0}C_{1} - 3M_{0}M_{1} \right) + \frac{2R}{2} \left(M_{0}M_{1} - M_{1}\mu_{0} - M_{0}\mu_{1} + \mu_{0}\mu_{1} \right) \end{bmatrix}$$

$$\frac{\partial LB}{\partial \Sigma_{i}^{-1}} = \frac{1}{2} \sum_{j=1}^{M} \left(R_{j}\eta_{ij}\Sigma_{i} - \eta_{ij}R_{j} \left[(M_{j} - \mu_{i})(M_{j} - \mu_{i})^{T} + \frac{1}{12}(A_{j}A_{j}^{T} + B_{j}B_{j}^{T} + C_{j}C_{j}^{T} - 3M_{j}M_{j}^{T} \right) \right] \right)$$

$$\tag{26}$$

Setting this derivative to zero and solving gives us the following expression for the new covariance

$$\Sigma_{i} = \sum_{j=1}^{M} \frac{\eta_{ij}R_{j}\left[(M_{j} - \mu_{i})(M_{j} - \mu_{i})^{T} + \frac{1}{12}(A_{j}A_{j}^{T} + B_{j}B_{j}^{T} + C_{j}C_{j}^{T} - 3M_{j}M_{j}^{T})\right]}{\sum_{j=1}^{M} R_{j}\eta_{ij}}$$

$$= \sum_{j=1}^{M} \frac{\eta_{ij}R_{j}\left[(M_{j} - \mu_{i})(M_{j} - \mu_{i})^{T}\right]}{\sum_{j=1}^{M} R_{j}\eta_{ij}} + \frac{1}{12} \frac{\eta_{ij}R_{j}\left[(A_{j}A_{j}^{T} + B_{j}B_{j}^{T} + C_{j}C_{j}^{T} - 3M_{j}M_{j}^{T})\right]}{\sum_{j=1}^{M} R_{j}\eta_{ij}}$$

$$= \sum_{j=1}^{M} \frac{\eta_{ij}R_{j}}{\sum_{j=1}^{M} R_{j}\eta_{ij}} \left[\underbrace{(M_{j} - \mu_{i})(M_{j} - \mu_{i})^{T}}_{cov(M_{j},\mu_{i})} + \underbrace{\frac{1}{12}(A_{j}A_{j}^{T} + B_{j}B_{j}^{T} + C_{j}C_{j}^{T} - 3M_{j}M_{j}^{T})}_{cov(\Delta_{j})} \right]$$

$$(27)$$

44

For GMMs we will use the lower bound

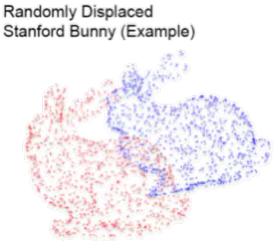
$$L = \exp\left(\sum_{j=1}^{M} \int_{\Delta} \log\left(\sum_{i=1}^{K} \pi_{i} \ \mathcal{N}(x; \mu_{i}, \Sigma_{i})\right) dx\right)$$
$$\log(L) = \sum_{j=1}^{M} \int_{\Delta} \log\left(\sum_{i=1}^{K} \pi_{i} \ \mathcal{N}(x; \mu_{i}, \Sigma_{i})\right) dx$$
$$\geq \sum_{j=1}^{M} \sum_{i=1}^{K} \int_{\Delta} \log\left(\pi_{i} \ \mathcal{N}(x; \mu_{i}, \Sigma_{i})\right) dx$$

P2D Registration Results

Model	Rotation Error (% of ICP)		Translation Error (% of ICP)	
	points	mesh	points	mesh
Armadillo	127	37	161	33
Bunny	50	28	41	17
Dragon	68	25	40	19
Нарру	101	27	85	27
Lucy	95	23	122	35

Mesh Registration with P2D

Method



- 1. Apply a random rotation + translation to the point cloud
- 2. Point-to-Distribution (P2D) registration of point cloud to GMM
 - Perform tests with GMMs fit to
 - i. mesh vertices
 - ii. mesh triangles
 - Optimize the GMM likelihood with rigid body transformation (q & t)
 - BFGS Optimization using numerical gradients, starting from identity

Eckart, Kim, Kautz. "HGMR: Hierarchical Gaussian Mixtures for Adaptive 3D Registration." ECCV (2018)

Acknowledgements

- Martial Hebert
- Robotics Institute
- Reviewers
- Funding?

Representing points using pixel squares

